Potential of Support-Vector Regression for Forecasting Stream Flow

dc.authoridAkib, Shatirah/0000-0002-6538-0716
dc.authoridMat Kiah, Miss Laiha/0000-0002-1240-5406
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authorscopusid56521310500
dc.authorscopusid57221738247
dc.authorscopusid35147638800
dc.authorscopusid56962766700
dc.authorscopusid36630015000
dc.authorscopusid24833455600
dc.authorwosidAkib, Shatirah/C-5165-2011
dc.authorwosidMat Kiah, Miss Laiha/B-2767-2010
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.contributor.authorRadzi, Mohd Rashid Bin Mohd
dc.contributor.authorShamshirband, Shahaboddin
dc.contributor.authorAghabozorgi, Saeed
dc.contributor.authorMisra, Sanjay
dc.contributor.authorAkib, Shatirah
dc.contributor.authorKiah, Laiha Mat
dc.contributor.otherComputer Engineering
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-10-06T11:00:04Z
dc.date.available2024-10-06T11:00:04Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Radzi, Mohd Rashid Bin Mohd; Akib, Shatirah] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur, Malaysia; [Shamshirband, Shahaboddin] Islamic Azad Univ, Chalous Branch, Dept Comp Sci, Chalous 46615397, Mazandaran, Iran; [Aghabozorgi, Saeed] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Informat Syst, Kuala Lumpur, Malaysia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; [Kiah, Laiha Mat] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur, Malaysiaen_US
dc.descriptionAkib, Shatirah/0000-0002-6538-0716; Mat Kiah, Miss Laiha/0000-0002-1240-5406; Misra, Sanjay/0000-0002-3556-9331en_US
dc.description.abstractStream flow is an important input for hydrology studies because it determines the water variability and magnitude of a river. Water resources engineering always deals with historical data and tries to estimate the forecasting records in order to give a better prediction for any water resources applications, such as designing the water potential of hydroelectric dams, estimating low flow, and maintaining the water supply. This paper presents three soft-computing approaches for dealing with these issues, i.e. artificial neural networks (ANNs), adaptive-neuro-fuzzy inference systems (ANFISs), and support vector machines (SVMs). Telom River, located in the Cameron Highlands district of Pahang, Malaysia, was used in making the estimation. The Telom River's daily mean discharge records, such as rainfall and river-level data, were used for the period of March 1984-January 2013 for training, testing, and validating the selected models. The SVM approach provided better results than ANFIS and ANNs in estimating the daily mean fluctuation of the stream's flow.en_US
dc.description.sponsorshipSponsoring Research Unit, Institute of Research and Consultancy Management, University of Malaya; Faculty of Engineering, University Malayaen_US
dc.description.sponsorshipThe authors would like to acknowledge the Sponsoring Research Unit, Institute of Research and Consultancy Management, University of Malaya and the Faculty of Engineering, University Malaya for their financial support for this research.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount1
dc.identifier.endpage1024en_US
dc.identifier.issn1330-3651
dc.identifier.issn1848-6339
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-84923103646
dc.identifier.scopusqualityQ3
dc.identifier.startpage1017en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9069
dc.identifier.volume21en_US
dc.identifier.wosWOS:000344737100013
dc.identifier.wosqualityQ4
dc.institutionauthorMısra, Sanjay
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherUniv Osijek, Tech Facen_US
dc.relation.ispartofTehnicki Vjesniken_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subjectstream's flowen_US
dc.subjectsupport vector machineen_US
dc.subjectneuro-fuzzyen_US
dc.subjectneural networksen_US
dc.subjectforecasten_US
dc.titlePotential of Support-Vector Regression for Forecasting Stream Flowen_US
dc.title.alternativePotencijal support-vector regresije u prognoziranju vodotokaen_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections