Potential of Support-Vector Regression for Forecasting Stream Flow
dc.authorid | Akib, Shatirah/0000-0002-6538-0716 | |
dc.authorid | Mat Kiah, Miss Laiha/0000-0002-1240-5406 | |
dc.authorid | Misra, Sanjay/0000-0002-3556-9331 | |
dc.authorscopusid | 56521310500 | |
dc.authorscopusid | 57221738247 | |
dc.authorscopusid | 35147638800 | |
dc.authorscopusid | 56962766700 | |
dc.authorscopusid | 36630015000 | |
dc.authorscopusid | 24833455600 | |
dc.authorwosid | Akib, Shatirah/C-5165-2011 | |
dc.authorwosid | Mat Kiah, Miss Laiha/B-2767-2010 | |
dc.authorwosid | Misra, Sanjay/K-2203-2014 | |
dc.contributor.author | Radzi, Mohd Rashid Bin Mohd | |
dc.contributor.author | Shamshirband, Shahaboddin | |
dc.contributor.author | Aghabozorgi, Saeed | |
dc.contributor.author | Misra, Sanjay | |
dc.contributor.author | Akib, Shatirah | |
dc.contributor.author | Kiah, Laiha Mat | |
dc.contributor.other | Computer Engineering | |
dc.contributor.other | Computer Engineering | |
dc.date.accessioned | 2024-10-06T11:00:04Z | |
dc.date.available | 2024-10-06T11:00:04Z | |
dc.date.issued | 2014 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Radzi, Mohd Rashid Bin Mohd; Akib, Shatirah] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur, Malaysia; [Shamshirband, Shahaboddin] Islamic Azad Univ, Chalous Branch, Dept Comp Sci, Chalous 46615397, Mazandaran, Iran; [Aghabozorgi, Saeed] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Informat Syst, Kuala Lumpur, Malaysia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; [Kiah, Laiha Mat] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur, Malaysia | en_US |
dc.description | Akib, Shatirah/0000-0002-6538-0716; Mat Kiah, Miss Laiha/0000-0002-1240-5406; Misra, Sanjay/0000-0002-3556-9331 | en_US |
dc.description.abstract | Stream flow is an important input for hydrology studies because it determines the water variability and magnitude of a river. Water resources engineering always deals with historical data and tries to estimate the forecasting records in order to give a better prediction for any water resources applications, such as designing the water potential of hydroelectric dams, estimating low flow, and maintaining the water supply. This paper presents three soft-computing approaches for dealing with these issues, i.e. artificial neural networks (ANNs), adaptive-neuro-fuzzy inference systems (ANFISs), and support vector machines (SVMs). Telom River, located in the Cameron Highlands district of Pahang, Malaysia, was used in making the estimation. The Telom River's daily mean discharge records, such as rainfall and river-level data, were used for the period of March 1984-January 2013 for training, testing, and validating the selected models. The SVM approach provided better results than ANFIS and ANNs in estimating the daily mean fluctuation of the stream's flow. | en_US |
dc.description.sponsorship | Sponsoring Research Unit, Institute of Research and Consultancy Management, University of Malaya; Faculty of Engineering, University Malaya | en_US |
dc.description.sponsorship | The authors would like to acknowledge the Sponsoring Research Unit, Institute of Research and Consultancy Management, University of Malaya and the Faculty of Engineering, University Malaya for their financial support for this research. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citationcount | 1 | |
dc.identifier.endpage | 1024 | en_US |
dc.identifier.issn | 1330-3651 | |
dc.identifier.issn | 1848-6339 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-84923103646 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1017 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/9069 | |
dc.identifier.volume | 21 | en_US |
dc.identifier.wos | WOS:000344737100013 | |
dc.identifier.wosquality | Q4 | |
dc.institutionauthor | Mısra, Sanjay | |
dc.institutionauthor | Mısra, Sanjay | |
dc.language.iso | en | en_US |
dc.publisher | Univ Osijek, Tech Fac | en_US |
dc.relation.ispartof | Tehnicki Vjesnik | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.subject | stream's flow | en_US |
dc.subject | support vector machine | en_US |
dc.subject | neuro-fuzzy | en_US |
dc.subject | neural networks | en_US |
dc.subject | forecast | en_US |
dc.title | Potential of Support-Vector Regression for Forecasting Stream Flow | en_US |
dc.title.alternative | Potencijal support-vector regresije u prognoziranju vodotoka | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isAuthorOfPublication.latestForDiscovery | 53e88841-fdb7-484f-9e08-efa4e6d1a090 | |
relation.isOrgUnitOfPublication | e0809e2c-77a7-4f04-9cb0-4bccec9395fa | |
relation.isOrgUnitOfPublication.latestForDiscovery | e0809e2c-77a7-4f04-9cb0-4bccec9395fa |