Potential of Support-Vector Regression for Forecasting Stream Flow

dc.contributor.author Radzi, Mohd Rashid Bin Mohd
dc.contributor.author Shamshirband, Shahaboddin
dc.contributor.author Aghabozorgi, Saeed
dc.contributor.author Misra, Sanjay
dc.contributor.author Akib, Shatirah
dc.contributor.author Kiah, Laiha Mat
dc.contributor.other Computer Engineering
dc.contributor.other Computer Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-10-06T11:00:04Z
dc.date.available 2024-10-06T11:00:04Z
dc.date.issued 2014
dc.description Akib, Shatirah/0000-0002-6538-0716; Mat Kiah, Miss Laiha/0000-0002-1240-5406; Misra, Sanjay/0000-0002-3556-9331 en_US
dc.description.abstract Stream flow is an important input for hydrology studies because it determines the water variability and magnitude of a river. Water resources engineering always deals with historical data and tries to estimate the forecasting records in order to give a better prediction for any water resources applications, such as designing the water potential of hydroelectric dams, estimating low flow, and maintaining the water supply. This paper presents three soft-computing approaches for dealing with these issues, i.e. artificial neural networks (ANNs), adaptive-neuro-fuzzy inference systems (ANFISs), and support vector machines (SVMs). Telom River, located in the Cameron Highlands district of Pahang, Malaysia, was used in making the estimation. The Telom River's daily mean discharge records, such as rainfall and river-level data, were used for the period of March 1984-January 2013 for training, testing, and validating the selected models. The SVM approach provided better results than ANFIS and ANNs in estimating the daily mean fluctuation of the stream's flow. en_US
dc.description.sponsorship Sponsoring Research Unit, Institute of Research and Consultancy Management, University of Malaya; Faculty of Engineering, University Malaya en_US
dc.description.sponsorship The authors would like to acknowledge the Sponsoring Research Unit, Institute of Research and Consultancy Management, University of Malaya and the Faculty of Engineering, University Malaya for their financial support for this research. en_US
dc.identifier.issn 1330-3651
dc.identifier.issn 1848-6339
dc.identifier.scopus 2-s2.0-84923103646
dc.identifier.uri https://hdl.handle.net/20.500.14411/9069
dc.language.iso en en_US
dc.publisher Univ Osijek, Tech Fac en_US
dc.relation.ispartof Tehnicki Vjesnik en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject stream's flow en_US
dc.subject support vector machine en_US
dc.subject neuro-fuzzy en_US
dc.subject neural networks en_US
dc.subject forecast en_US
dc.title Potential of Support-Vector Regression for Forecasting Stream Flow en_US
dc.title.alternative Potencijal support-vector regresije u prognoziranju vodotoka en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Akib, Shatirah/0000-0002-6538-0716
gdc.author.id Mat Kiah, Miss Laiha/0000-0002-1240-5406
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.institutional Mısra, Sanjay
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 56521310500
gdc.author.scopusid 57221738247
gdc.author.scopusid 35147638800
gdc.author.scopusid 56962766700
gdc.author.scopusid 36630015000
gdc.author.scopusid 24833455600
gdc.author.wosid Akib, Shatirah/C-5165-2011
gdc.author.wosid Mat Kiah, Miss Laiha/B-2767-2010
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Radzi, Mohd Rashid Bin Mohd; Akib, Shatirah] Univ Malaya, Fac Engn, Dept Civil Engn, Kuala Lumpur, Malaysia; [Shamshirband, Shahaboddin] Islamic Azad Univ, Chalous Branch, Dept Comp Sci, Chalous 46615397, Mazandaran, Iran; [Aghabozorgi, Saeed] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Informat Syst, Kuala Lumpur, Malaysia; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; [Kiah, Laiha Mat] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur, Malaysia en_US
gdc.description.endpage 1024 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1017 en_US
gdc.description.volume 21 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.wos WOS:000344737100013
gdc.scopus.citedcount 2
gdc.wos.citedcount 1
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections