On the <i>q</I>-bernstein Polynomials of Piecewise Linear Functions in the Case <i>q</I> &gt; 1

dc.contributor.author Kaskaloglu, Kerem
dc.contributor.author Ostrovska, Sofiya
dc.date.accessioned 2024-07-05T14:28:52Z
dc.date.available 2024-07-05T14:28:52Z
dc.date.issued 2013
dc.description.abstract The aim of this paper is to present new results related to the approximation of continuous functions by their q-Bernstein polynomials in the case q > 1. The first part of the paper is devoted to the behavior of the q-Bernstein polynomials of piecewise linear functions. This study naturally leads to the notion of truncated q-Bernstein polynomials introduced in the paper. The second part deals with the asymptotic estimates for the norms of the m-truncated q-Bernstein polynomials, in the case where both n and q vary. The results of the paper are illustrated by numerical examples. (C) 2012 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.mcm.2012.01.022
dc.identifier.issn 0895-7177
dc.identifier.issn 1872-9479
dc.identifier.scopus 2-s2.0-84875679564
dc.identifier.uri https://doi.org/10.1016/j.mcm.2012.01.022
dc.identifier.uri https://hdl.handle.net/20.500.14411/444
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Mathematical and Computer Modelling
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject q-Bernstein operator en_US
dc.subject Operator norm en_US
dc.title On the <i>q</I>-bernstein Polynomials of Piecewise Linear Functions in the Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 24490607700
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Kaskaloglu, Kerem; Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 2431 en_US
gdc.description.issue 9-10 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 2419 en_US
gdc.description.volume 57 en_US
gdc.identifier.openalex W1974799138
gdc.identifier.wos WOS:000317262100041
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.640297E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.9753935E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.31763389
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Ostrovska, Sofiya
gdc.virtual.author Kaşkaloğlu, Kerem
gdc.wos.citedcount 2
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 7c5c695f-055a-4ab0-8322-1c80e4df1360
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections