A New Conducting Polymer Bearing 4,4-difluoro-4-bora-3a,4a-diaza-<i>s</I>-indacene (bodipy) Subunit: Synthesis and Characterization

No Thumbnail Available

Date

2008

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

A new monomer system based on thiophene, pyrrole and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dye (SNS-BODIPY) was synthesized and its corresponding polymer (PSNS-BODIPY) was obtained via repetitive cycling or constant potential electrolysis in 0.1 M tetrabutylammonium hexafluorophosphate dissolved in dichloromethane. The PSNS-BODIPY film has very stable and well-defined reversible redox couples during p-doping process. Multi-electrochromic polymer film has a band gap of 2.9 eV with two absorption bands in its neutral state at 351 and 525 nm, attributed to the polymer backbone and BODIPY subunits, respectively. The percentage transmittance changes between both states (neutral and oxidized) were found as 12.1% for 351 nm and 17.7% for 525 nm in the visible region as well as 46.2% for 1050 nm in the near-infrared region. Beyond the robustness, the PSNS-BODIPY film has high redox stability (retaining 53.3% of its electroactivity at 351 nm after 2000 switching) with a low response time of 1.0 s. (C) 2008 Elsevier Ltd. All rights reserved.

Description

Algi, Fatih/0000-0001-9376-1770

Keywords

Electropolymerization, Polythiophene, Polypyrrole, BODIPY

Turkish CoHE Thesis Center URL

Fields of Science

Citation

94

WoS Q

Q2

Scopus Q

Source

Volume

54

Issue

2

Start Page

786

End Page

792

Collections