A Wavelet-Based Feature Set for Recognizing Pulse Repetition Interval Modulation Patterns

dc.authorid Gencol, Kenan/0000-0003-4044-3482
dc.authorid Kara, Ali/0000-0002-9739-7619
dc.authorscopusid 55807039100
dc.authorscopusid 8236788700
dc.authorscopusid 7102824862
dc.authorwosid Gencol, Kenan/AAA-9358-2019
dc.authorwosid At, Nuray/AAM-1705-2020
dc.authorwosid Kara, Ali/R-8038-2019
dc.contributor.author Gencol, Kenan
dc.contributor.author At, Nuray
dc.contributor.author Kara, Ali
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T14:30:30Z
dc.date.available 2024-07-05T14:30:30Z
dc.date.issued 2016
dc.department Atılım University en_US
dc.department-temp [Gencol, Kenan; Kara, Ali] Atilim Univ, Dept Elect & Elect Engn, Ankara, Turkey; [At, Nuray] Anadolu Univ, Dept Elect & Elect Engn, Eskisehir, Turkey en_US
dc.description Gencol, Kenan/0000-0003-4044-3482; Kara, Ali/0000-0002-9739-7619 en_US
dc.description.abstract This paper presents a new feature set for the problem of recognizing pulse repetition interval (PRI) modulation patterns. The recognition is based upon the features extracted from the multiresolution decomposition of different types of PRI modulated sequences. Special emphasis is placed on the recognition of jittered and stagger type PRI sequences due to the fact that these types of PRI sequences appear predominantly in modern electronic warfare environments for some specific mission requirements and recognition of them is heavily based on histogram features. We test our method with a broad range of PRI modulation parameters. Simulation results show that the proposed feature set is highly robust and separates jittered, stagger, and other modulation patterns very well. Especially for the stagger type of PRI sequences, wavelet-based features outperform conventional histogram-based features. Advantages of the proposed feature set along with its robustness criteria are analyzed in detail. en_US
dc.identifier.citationcount 26
dc.identifier.doi 10.3906/elk-1405-152
dc.identifier.endpage 3090 en_US
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-84974676823
dc.identifier.scopusquality Q3
dc.identifier.startpage 3078 en_US
dc.identifier.uri https://doi.org/10.3906/elk-1405-152
dc.identifier.uri https://hdl.handle.net/20.500.14411/549
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000374325800073
dc.identifier.wosquality Q4
dc.institutionauthor Gençol, Kenan
dc.institutionauthor Kara, Ali
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 30
dc.subject Electronic warfare en_US
dc.subject radar intercept systems en_US
dc.subject pulse repetition interval modulation en_US
dc.subject feature extraction en_US
dc.subject wavelet transforms en_US
dc.subject support vector machines en_US
dc.title A Wavelet-Based Feature Set for Recognizing Pulse Repetition Interval Modulation Patterns en_US
dc.type Article en_US
dc.wos.citedbyCount 24
dspace.entity.type Publication
relation.isAuthorOfPublication fda0ee28-3bf9-4a27-a899-8dfb10e86032
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery fda0ee28-3bf9-4a27-a899-8dfb10e86032
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections