A Wavelet-Based Feature Set for Recognizing Pulse Repetition Interval Modulation Patterns

dc.authoridGencol, Kenan/0000-0003-4044-3482
dc.authoridKara, Ali/0000-0002-9739-7619
dc.authorscopusid55807039100
dc.authorscopusid8236788700
dc.authorscopusid7102824862
dc.authorwosidGencol, Kenan/AAA-9358-2019
dc.authorwosidAt, Nuray/AAM-1705-2020
dc.authorwosidKara, Ali/R-8038-2019
dc.contributor.authorGencol, Kenan
dc.contributor.authorAt, Nuray
dc.contributor.authorKara, Ali
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T14:30:30Z
dc.date.available2024-07-05T14:30:30Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Gencol, Kenan; Kara, Ali] Atilim Univ, Dept Elect & Elect Engn, Ankara, Turkey; [At, Nuray] Anadolu Univ, Dept Elect & Elect Engn, Eskisehir, Turkeyen_US
dc.descriptionGencol, Kenan/0000-0003-4044-3482; Kara, Ali/0000-0002-9739-7619en_US
dc.description.abstractThis paper presents a new feature set for the problem of recognizing pulse repetition interval (PRI) modulation patterns. The recognition is based upon the features extracted from the multiresolution decomposition of different types of PRI modulated sequences. Special emphasis is placed on the recognition of jittered and stagger type PRI sequences due to the fact that these types of PRI sequences appear predominantly in modern electronic warfare environments for some specific mission requirements and recognition of them is heavily based on histogram features. We test our method with a broad range of PRI modulation parameters. Simulation results show that the proposed feature set is highly robust and separates jittered, stagger, and other modulation patterns very well. Especially for the stagger type of PRI sequences, wavelet-based features outperform conventional histogram-based features. Advantages of the proposed feature set along with its robustness criteria are analyzed in detail.en_US
dc.identifier.citationcount26
dc.identifier.doi10.3906/elk-1405-152
dc.identifier.endpage3090en_US
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84974676823
dc.identifier.scopusqualityQ3
dc.identifier.startpage3078en_US
dc.identifier.urihttps://doi.org/10.3906/elk-1405-152
dc.identifier.urihttps://hdl.handle.net/20.500.14411/549
dc.identifier.volume24en_US
dc.identifier.wosWOS:000374325800073
dc.identifier.wosqualityQ4
dc.institutionauthorGençol, Kenan
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectronic warfareen_US
dc.subjectradar intercept systemsen_US
dc.subjectpulse repetition interval modulationen_US
dc.subjectfeature extractionen_US
dc.subjectwavelet transformsen_US
dc.subjectsupport vector machinesen_US
dc.titleA Wavelet-Based Feature Set for Recognizing Pulse Repetition Interval Modulation Patternsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationfda0ee28-3bf9-4a27-a899-8dfb10e86032
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscoveryfda0ee28-3bf9-4a27-a899-8dfb10e86032
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections