Improved Global Robust Stability Criterion for Delayed Neural Networks

dc.contributor.author Singh, Vimal
dc.date.accessioned 2024-07-05T14:33:24Z
dc.date.available 2024-07-05T14:33:24Z
dc.date.issued 2007
dc.description.abstract A criterion for the uniqueness and global robust stability of the equilibrium point of interval Hopfield-type delayed neural networks is presented. The criterion is a marked improvement over a recent criterion due to Cao, Huang and Qu. (c) 2005 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.chaos.2005.09.050
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-33745816063
dc.identifier.uri https://doi.org/10.1016/j.chaos.2005.09.050
dc.identifier.uri https://hdl.handle.net/20.500.14411/928
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Chaos, Solitons & Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Improved Global Robust Stability Criterion for Delayed Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 229 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 224 en_US
gdc.description.volume 31 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W1965089447
gdc.identifier.wos WOS:000241014800028
gdc.oaire.diamondjournal false
gdc.oaire.impulse 18.0
gdc.oaire.influence 3.9345136E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Stability theory of functional-differential equations
gdc.oaire.keywords Hopfield-type delayed neural networks
gdc.oaire.keywords global robust stability
gdc.oaire.keywords Robust stability
gdc.oaire.keywords Neural networks for/in biological studies, artificial life and related topics
gdc.oaire.keywords Control/observation systems governed by ordinary differential equations
gdc.oaire.keywords global asymptotic stability
gdc.oaire.popularity 5.7365734E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.44976978
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 25
gdc.plumx.crossrefcites 20
gdc.plumx.mendeley 14
gdc.plumx.scopuscites 22
gdc.scopus.citedcount 22
gdc.virtual.author Sıngh, Vımal
gdc.wos.citedcount 23
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections