Energy Multiplication and Fissile Fuel Breeding Limits of Accelerator-Driven Systems With Uranium and Thorium Targets

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.

Journal Issue

Abstract

The study analyses the integral U-233 and Pu-239 breeding rates, neutron multiplication ratio through (n,xn)- and fission-reactions, heat release, energy multiplication and consequently the energy gain factor in infinite size thorium and uranium as breeder material in an accelerator driven systems (ADS), irradiated by a 1-GeV proton source. Energy gain factor has been calculated as M-energy = 1.67, 4.03 and 5.45 for thorium, depleted uranium (100% U-238) and natural uranium, respectively, where the infinite criticality values are k(infinity) = 0.40, 0.752 and 0.816. Fissile fuel material production is calculated as 53 Th-232(n,gamma)U-233, 80.24 and 90.65 U-238(n,gamma)Pu-239 atoms per incident proton, respectively. The neutron spectrum maximum is by similar to 1 MeV. Lower energy neutrons E < 1 MeV have major contribution on fissile fuel material breeding (>97.5%), whereas their share on energy multiplication is negligible (0.2%) for thorium, depleted uranium. Major fission events occur in the energy interval 1MeV < E < 50 MeV. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Description

celik, yurdunaz/0000-0002-9211-8510

Keywords

Accelerator driven systems, Thorium, Uranium, Energy multiplication, Fissile fuel breeding, Nuclear hydrogen production

Turkish CoHE Thesis Center URL

Fields of Science

Citation

11

WoS Q

Q1

Scopus Q

Source

Volume

40

Issue

11

Start Page

4037

End Page

4046

Collections