Effect of Hardening Models on Different Ductile Fracture Criteria in Sheet Metal Forming

dc.authorid Dizaji, Shahram A./0000-0001-7256-2991
dc.authorid Darendeliler, Haluk/0000-0002-7814-7294
dc.authorscopusid 57191371328
dc.authorscopusid 6601971454
dc.authorscopusid 7003779929
dc.authorwosid Dizaji, Shahram A./H-6507-2016
dc.authorwosid Darendeliler, Haluk/AAZ-9202-2020
dc.contributor.author Dizaji, Shahram Abbasnejad
dc.contributor.author Darendeliler, Haluk
dc.contributor.author Kaftanoglu, Bilgin
dc.contributor.other Manufacturing Engineering
dc.date.accessioned 2024-07-05T14:31:20Z
dc.date.available 2024-07-05T14:31:20Z
dc.date.issued 2016
dc.department Atılım University en_US
dc.department-temp [Dizaji, Shahram Abbasnejad; Darendeliler, Haluk] Middle E Tech Univ, Dept Mech Engn, TR-06800 Ankara, Turkey; [Kaftanoglu, Bilgin] Atilim Univ, Dept Mfg Engn, TR-06836 Ankara, Turkey en_US
dc.description Dizaji, Shahram A./0000-0001-7256-2991; Darendeliler, Haluk/0000-0002-7814-7294 en_US
dc.description.abstract Prediction of the fracture is one of the challenging issues which gains attention in sheet metal forming as numerical analyses are being extensively used to simulate the process. To have better results in predicting the sheet metal fracture, appropriate ductile fracture criterion (DFC), yield criterion and hardening rule should be chosen. In this study, the effects of different hardening models namely isotropic, kinematic and combined hardening rules on the various uncoupled ductile fracture criteria are investigated using experimental and numerical methods. Five different ductile fracture criteria are implemented to a finite element code by the user subroutines. The criterion constants of DFCs are obtained by the related experimental tests. The in-plane principle strains obtained by the finite element analyses for different DFCs are compared with the experimental results. Also, the experimental results are used to evaluate the principle strain values calculated by the finite element analysis for different combinations of DFCs and hardening rules. It is shown that some DFCs give better predictions if the appropriate hardening model is employed. en_US
dc.identifier.citationcount 6
dc.identifier.doi 10.1007/s12289-014-1188-5
dc.identifier.endpage 267 en_US
dc.identifier.issn 1960-6206
dc.identifier.issn 1960-6214
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-84905299015
dc.identifier.scopusquality Q2
dc.identifier.startpage 261 en_US
dc.identifier.uri https://doi.org/10.1007/s12289-014-1188-5
dc.identifier.uri https://hdl.handle.net/20.500.14411/649
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000379880100002
dc.identifier.wosquality Q2
dc.institutionauthor Kaftanoğlu, Bilgin
dc.language.iso en en_US
dc.publisher Springer France en_US
dc.relation.ispartof 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET) -- JAN 05-10, 2014 -- Melbourne, AUSTRALIA en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 7
dc.subject Sheet Metal en_US
dc.subject Ductile Fracture en_US
dc.subject Hardening Models en_US
dc.subject Finite Element Method en_US
dc.title Effect of Hardening Models on Different Ductile Fracture Criteria in Sheet Metal Forming en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication 6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isAuthorOfPublication.latestForDiscovery 6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections