Effect of hardening models on different ductile fracture criteria in sheet metal forming

dc.authoridDizaji, Shahram A./0000-0001-7256-2991
dc.authoridDarendeliler, Haluk/0000-0002-7814-7294
dc.authorscopusid57191371328
dc.authorscopusid6601971454
dc.authorscopusid7003779929
dc.authorwosidDizaji, Shahram A./H-6507-2016
dc.authorwosidDarendeliler, Haluk/AAZ-9202-2020
dc.contributor.authorKaftanoğlu, Bilgin
dc.contributor.authorDarendeliler, Haluk
dc.contributor.authorKaftanoglu, Bilgin
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T14:31:20Z
dc.date.available2024-07-05T14:31:20Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Dizaji, Shahram Abbasnejad; Darendeliler, Haluk] Middle E Tech Univ, Dept Mech Engn, TR-06800 Ankara, Turkey; [Kaftanoglu, Bilgin] Atilim Univ, Dept Mfg Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionDizaji, Shahram A./0000-0001-7256-2991; Darendeliler, Haluk/0000-0002-7814-7294en_US
dc.description.abstractPrediction of the fracture is one of the challenging issues which gains attention in sheet metal forming as numerical analyses are being extensively used to simulate the process. To have better results in predicting the sheet metal fracture, appropriate ductile fracture criterion (DFC), yield criterion and hardening rule should be chosen. In this study, the effects of different hardening models namely isotropic, kinematic and combined hardening rules on the various uncoupled ductile fracture criteria are investigated using experimental and numerical methods. Five different ductile fracture criteria are implemented to a finite element code by the user subroutines. The criterion constants of DFCs are obtained by the related experimental tests. The in-plane principle strains obtained by the finite element analyses for different DFCs are compared with the experimental results. Also, the experimental results are used to evaluate the principle strain values calculated by the finite element analysis for different combinations of DFCs and hardening rules. It is shown that some DFCs give better predictions if the appropriate hardening model is employed.en_US
dc.identifier.citation6
dc.identifier.doi10.1007/s12289-014-1188-5
dc.identifier.endpage267en_US
dc.identifier.issn1960-6206
dc.identifier.issn1960-6214
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84905299015
dc.identifier.scopusqualityQ2
dc.identifier.startpage261en_US
dc.identifier.urihttps://doi.org/10.1007/s12289-014-1188-5
dc.identifier.urihttps://hdl.handle.net/20.500.14411/649
dc.identifier.volume9en_US
dc.identifier.wosWOS:000379880100002
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Franceen_US
dc.relation.ispartof9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (NUMISHEET) -- JAN 05-10, 2014 -- Melbourne, AUSTRALIAen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSheet Metalen_US
dc.subjectDuctile Fractureen_US
dc.subjectHardening Modelsen_US
dc.subjectFinite Element Methoden_US
dc.titleEffect of hardening models on different ductile fracture criteria in sheet metal formingen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isAuthorOfPublication.latestForDiscovery6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections