Neural Network and Classification Approach in Identifying Customer Behavior in the Banking Sector: a Case Study of an International Bank

dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid Colomo-Palacios, Ricardo/0000-0002-1555-9726
dc.authorid Fernandez Sanz, Luis/0000-0003-0778-0073
dc.authorscopusid 35264573100
dc.authorscopusid 56962766700
dc.authorscopusid 25653963200
dc.authorscopusid 25630384100
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid Colomo-Palacios, Ricardo/E-5139-2010
dc.contributor.author Ogwueleka, Francisca Nonyelum
dc.contributor.author Misra, Sanjay
dc.contributor.author Colomo-Palacios, Ricardo
dc.contributor.author Fernandez, Luis
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T14:31:45Z
dc.date.available 2024-07-05T14:31:45Z
dc.date.issued 2015
dc.department Atılım University en_US
dc.department-temp [Ogwueleka, Francisca Nonyelum] Fed Univ Technol, Dept Comp Sci, Minna, Niger State, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Colomo-Palacios, Ricardo] Univ Carlos III Madrid, E-28903 Getafe, Spain; [Fernandez, Luis] Univ Alcala de Henares, Dept Ciencias Comp, Alcala De Henares 28400, Spain en_US
dc.description Misra, Sanjay/0000-0002-3556-9331; Colomo-Palacios, Ricardo/0000-0002-1555-9726; Fernandez Sanz, Luis/0000-0003-0778-0073 en_US
dc.description.abstract The customer relationship focus for banks is in development of main competencies and strategies of building strong profitable customer relationships through considering and managing the customer impression, influence on the culture of the bank, satisfactory treatment, and assessment of valued relationship building. Artificial neural networks (ANNs) are used after data segmentation and classification, where the designed model register records into two class sets, that is, the training and testing sets. ANN predicts new customer behavior from previously observed customer behavior after executing the process of learning from existing data. This article proposes an ANN model, which is developed using a six-step procedure. The back-propagation algorithm is used to train the ANN by adjusting its weights to minimize the difference between the current ANN output and the desired output. An evaluation process is conducted to determine whether the ANN has learned how to perform. The training process is halted periodically, and its performance is tested until an acceptable result is obtained. The principles underlying detection software are grounded in classical statistical decision theory. en_US
dc.identifier.citationcount 26
dc.identifier.doi 10.1002/hfm.20398
dc.identifier.endpage 42 en_US
dc.identifier.issn 1090-8471
dc.identifier.issn 1520-6564
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-84916223113
dc.identifier.scopusquality Q2
dc.identifier.startpage 28 en_US
dc.identifier.uri https://doi.org/10.1002/hfm.20398
dc.identifier.uri https://hdl.handle.net/20.500.14411/730
dc.identifier.volume 25 en_US
dc.identifier.wos WOS:000346034900003
dc.institutionauthor Mısra, Sanjay
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 45
dc.subject Customer relationship management (CRM) en_US
dc.subject Artificial neural network (ANN) en_US
dc.subject Classification en_US
dc.subject Banks en_US
dc.subject Back-propagation algorithm en_US
dc.title Neural Network and Classification Approach in Identifying Customer Behavior in the Banking Sector: a Case Study of an International Bank en_US
dc.type Article en_US
dc.wos.citedbyCount 29
dspace.entity.type Publication
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections