Neural Network and Classification Approach in Identifying Customer Behavior in the Banking Sector: a Case Study of an International Bank

dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridColomo-Palacios, Ricardo/0000-0002-1555-9726
dc.authoridFernandez Sanz, Luis/0000-0003-0778-0073
dc.authorscopusid35264573100
dc.authorscopusid56962766700
dc.authorscopusid25653963200
dc.authorscopusid25630384100
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidColomo-Palacios, Ricardo/E-5139-2010
dc.contributor.authorOgwueleka, Francisca Nonyelum
dc.contributor.authorMısra, Sanjay
dc.contributor.authorMisra, Sanjay
dc.contributor.authorColomo-Palacios, Ricardo
dc.contributor.authorFernandez, Luis
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T14:31:45Z
dc.date.available2024-07-05T14:31:45Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Ogwueleka, Francisca Nonyelum] Fed Univ Technol, Dept Comp Sci, Minna, Niger State, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Colomo-Palacios, Ricardo] Univ Carlos III Madrid, E-28903 Getafe, Spain; [Fernandez, Luis] Univ Alcala de Henares, Dept Ciencias Comp, Alcala De Henares 28400, Spainen_US
dc.descriptionMisra, Sanjay/0000-0002-3556-9331; Colomo-Palacios, Ricardo/0000-0002-1555-9726; Fernandez Sanz, Luis/0000-0003-0778-0073en_US
dc.description.abstractThe customer relationship focus for banks is in development of main competencies and strategies of building strong profitable customer relationships through considering and managing the customer impression, influence on the culture of the bank, satisfactory treatment, and assessment of valued relationship building. Artificial neural networks (ANNs) are used after data segmentation and classification, where the designed model register records into two class sets, that is, the training and testing sets. ANN predicts new customer behavior from previously observed customer behavior after executing the process of learning from existing data. This article proposes an ANN model, which is developed using a six-step procedure. The back-propagation algorithm is used to train the ANN by adjusting its weights to minimize the difference between the current ANN output and the desired output. An evaluation process is conducted to determine whether the ANN has learned how to perform. The training process is halted periodically, and its performance is tested until an acceptable result is obtained. The principles underlying detection software are grounded in classical statistical decision theory.en_US
dc.identifier.citation26
dc.identifier.doi10.1002/hfm.20398
dc.identifier.endpage42en_US
dc.identifier.issn1090-8471
dc.identifier.issn1520-6564
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84916223113
dc.identifier.scopusqualityQ2
dc.identifier.startpage28en_US
dc.identifier.urihttps://doi.org/10.1002/hfm.20398
dc.identifier.urihttps://hdl.handle.net/20.500.14411/730
dc.identifier.volume25en_US
dc.identifier.wosWOS:000346034900003
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCustomer relationship management (CRM)en_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectClassificationen_US
dc.subjectBanksen_US
dc.subjectBack-propagation algorithmen_US
dc.titleNeural Network and Classification Approach in Identifying Customer Behavior in the Banking Sector: a Case Study of an International Banken_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections