Machine Learning for Sustainable Reutilization of Waste Materials as Energy Sources - a Comprehensive Review

dc.contributor.author Peng, Wei
dc.contributor.author Sadaghiani, Omid Karimi
dc.date.accessioned 2024-07-05T15:21:44Z
dc.date.available 2024-07-05T15:21:44Z
dc.date.issued 2024
dc.description.abstract This work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes. en_US
dc.identifier.doi 10.1080/15435075.2023.2255647
dc.identifier.issn 1543-5075
dc.identifier.issn 1543-5083
dc.identifier.scopus 2-s2.0-85170687008
dc.identifier.uri https://doi.org/10.1080/15435075.2023.2255647
dc.identifier.uri https://hdl.handle.net/20.500.14411/2125
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.ispartof International Journal of Green Energy
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Machine Learning en_US
dc.subject Deep learning en_US
dc.subject waste materials en_US
dc.subject sustainable production, energy source en_US
dc.title Machine Learning for Sustainable Reutilization of Waste Materials as Energy Sources - a Comprehensive Review en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.scopusid 55185365100
gdc.author.scopusid 57219351678
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::review
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Peng, Wei] Univ Regina, Fac Engn & Appl Sci, Regina, SK, Canada; [Sadaghiani, Omid Karimi] Atilim Univ, Fac Engn, Dept Energy Syst Engn, Ankara, Turkiye en_US
gdc.description.endpage 1666 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1641 en_US
gdc.description.volume 21 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4386605943
gdc.identifier.wos WOS:001063332300001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.568546E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.032532E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 1.78233088
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 2
gdc.plumx.mendeley 32
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.virtual.author Sadaghıanı, Omıd Karımı
gdc.wos.citedcount 2
relation.isAuthorOfPublication 4d20507e-cc74-4722-8d1a-c2317b0f9b6a
relation.isAuthorOfPublication.latestForDiscovery 4d20507e-cc74-4722-8d1a-c2317b0f9b6a
relation.isOrgUnitOfPublication 80f84cab-4b75-401b-b4b1-f2ec308f3067
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 80f84cab-4b75-401b-b4b1-f2ec308f3067

Files

Collections