Some results related to the Laplacian on vector fields

dc.authorscopusid56629236100
dc.authorscopusid6602317911
dc.authorscopusid7005860624
dc.authorwosidUnal, Bulent/I-7795-2012
dc.contributor.authorErkekoglu, Fazilet
dc.contributor.authorKupeli, Demir N.
dc.contributor.authorUebnal, Buelent
dc.date.accessioned2024-10-06T10:57:13Z
dc.date.available2024-10-06T10:57:13Z
dc.date.issued2006
dc.departmentAtılım Universityen_US
dc.department-tempHacettepe Univ, Dept Math, TR-06532 Ankara, Turkey; Bosna Hersek Caddesi, TR-06510 Ankara, Turkey; Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractA characterization of Euclidean spheres out of connected, compact, Einstein Riemannian manifolds of constant scalar curvature is made by a characterization of a vector field with an eigenvalue equation for the Laplacian on vector fields.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount6
dc.identifier.endpage154en_US
dc.identifier.issn0033-3883
dc.identifier.issue1-2en_US
dc.identifier.scopus2-s2.0-33746268565
dc.identifier.scopusqualityQ3
dc.identifier.startpage137en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/8689
dc.identifier.volume69en_US
dc.identifier.wosWOS:000238553400008
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherKossuth Lajos Tudomanyegyetemen_US
dc.relation.ispartofPublicationes Mathematicae Debrecenen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount4
dc.subjectLaplacianen_US
dc.subjectconformal vector fielden_US
dc.subjectgeodesic vector fielden_US
dc.subjecteigenvalue equationen_US
dc.subjectEinstein Riemannian manifolden_US
dc.subjectEuclidean sphereen_US
dc.titleSome results related to the Laplacian on vector fieldsen_US
dc.typeArticleen_US
dc.wos.citedbyCount6
dspace.entity.typePublication

Files

Collections