Lmi Approach To the Global Robust Stability of a Larger Class of Neural Networks With Delay

dc.contributor.author Singh, Vimal
dc.date.accessioned 2024-07-05T14:33:22Z
dc.date.available 2024-07-05T14:33:22Z
dc.date.issued 2007
dc.description.abstract Sufficient conditions in the form of linear matrix inequality for the uniqueness and global asymptotic stability of the equilibrium point of a large class of uncertain neural networks with delay are presented. The conditions are based on norm-bounded uncertainties. An example is given to show the effectiveness of the obtained results. A comparison is made between the present approach and an earlier approach due to Lu, Rong and Chen. An error is corrected in an earlier publication. (c) 2006 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.chaos.2006.01.001
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-33846397144
dc.identifier.uri https://doi.org/10.1016/j.chaos.2006.01.001
dc.identifier.uri https://hdl.handle.net/20.500.14411/925
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Chaos, Solitons & Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Lmi Approach To the Global Robust Stability of a Larger Class of Neural Networks With Delay en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 1934 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1927 en_US
gdc.description.volume 32 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W1981861103
gdc.identifier.wos WOS:000244504000035
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.7243453E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Stability theory of functional-differential equations
gdc.oaire.keywords robust stability
gdc.oaire.keywords delay equations
gdc.oaire.keywords Robust stability
gdc.oaire.keywords Neural networks for/in biological studies, artificial life and related topics
gdc.oaire.keywords neural networks
gdc.oaire.popularity 8.3836166E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 4.19891421
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 13
gdc.plumx.crossrefcites 13
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.virtual.author Sıngh, Vımal
gdc.wos.citedcount 14
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections