Improved Global Robust Stability of Interval Delayed Neural Networks Via Split Interval: Generalizations

dc.authorscopusid7404651584
dc.contributor.authorSingh, Vimal
dc.contributor.authorSıngh, Vımal
dc.contributor.otherDepartment of Mechatronics Engineering
dc.date.accessioned2024-07-05T14:34:11Z
dc.date.available2024-07-05T14:34:11Z
dc.date.issued2008
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkeyen_US
dc.description.abstractdThe problem of global robust stability of Hop field-type delayed neural networks with the intervalized network parameters is revisited. Recently, a computationally tractable, i.e., linear matrix inequality (LMI) based global robust stability criterion derived from an earlier criterion based on dividing the given interval into more that two intervals has been presented. In the present paper, generalizations, i.e., division of the given interval into m intervals (where m is an integer greater than or equal to 2) is considered and some new LMI-based global robust stability criteria are derived. It is shown that, in some cases, m = 2 may not suffice, i.e., m > 2 may be needed to realize the improvement. An example showing the effectiveness of the proposed generalization is given. The paper also provides a complete and systematic explanation of the "split interval" idea. (c) 2008 Elsevier Inc. All rights reserved.en_US
dc.identifier.citation15
dc.identifier.doi10.1016/j.amc.2008.08.036
dc.identifier.endpage297en_US
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-55949112711
dc.identifier.startpage290en_US
dc.identifier.urihttps://doi.org/10.1016/j.amc.2008.08.036
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1029
dc.identifier.volume206en_US
dc.identifier.wosWOS:000260999200032
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamical interval neural networksen_US
dc.subjectEquilibrium analysisen_US
dc.subjectGlobal robust stabilityen_US
dc.subjectHopfield neural networksen_US
dc.subjectNeural networksen_US
dc.subjectNonlinear systemsen_US
dc.subjectTime-delay systemsen_US
dc.titleImproved Global Robust Stability of Interval Delayed Neural Networks Via Split Interval: Generalizationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscoverye3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublicatione2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication.latestForDiscoverye2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections