Improved Global Robust Stability of Interval Delayed Neural Networks Via Split Interval: Generalizations

dc.contributor.author Singh, Vimal
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:34:11Z
dc.date.available 2024-07-05T14:34:11Z
dc.date.issued 2008
dc.description.abstract dThe problem of global robust stability of Hop field-type delayed neural networks with the intervalized network parameters is revisited. Recently, a computationally tractable, i.e., linear matrix inequality (LMI) based global robust stability criterion derived from an earlier criterion based on dividing the given interval into more that two intervals has been presented. In the present paper, generalizations, i.e., division of the given interval into m intervals (where m is an integer greater than or equal to 2) is considered and some new LMI-based global robust stability criteria are derived. It is shown that, in some cases, m = 2 may not suffice, i.e., m > 2 may be needed to realize the improvement. An example showing the effectiveness of the proposed generalization is given. The paper also provides a complete and systematic explanation of the "split interval" idea. (c) 2008 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.amc.2008.08.036
dc.identifier.issn 0096-3003
dc.identifier.issn 1873-5649
dc.identifier.scopus 2-s2.0-55949112711
dc.identifier.uri https://doi.org/10.1016/j.amc.2008.08.036
dc.identifier.uri https://hdl.handle.net/20.500.14411/1029
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Applied Mathematics and Computation
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Dynamical interval neural networks en_US
dc.subject Equilibrium analysis en_US
dc.subject Global robust stability en_US
dc.subject Hopfield neural networks en_US
dc.subject Neural networks en_US
dc.subject Nonlinear systems en_US
dc.subject Time-delay systems en_US
dc.title Improved Global Robust Stability of Interval Delayed Neural Networks Via Split Interval: Generalizations en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Sıngh, Vımal
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 297 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 290 en_US
gdc.description.volume 206 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2018089952
gdc.identifier.wos WOS:000260999200032
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.324918E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.0707185E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 4.196
gdc.openalex.normalizedpercentile 0.85
gdc.opencitations.count 13
gdc.plumx.crossrefcites 13
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 17
gdc.scopus.citedcount 17
gdc.wos.citedcount 15
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections