Energy band gap and dispersive optical parameters in Bi<sub>1.5</sub>Zn<sub>0.92</sub>Nb<sub>1.5</sub>O<sub>6.92</sub> pyrochlore ceramics

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The compositional and optical properties of Bi1.5Zn0.92Nb1.5O6.92 Pyrochlore ceramics have been investigated by means of scanning electron microscopy (SEM) and UV-vis spectroscopy, respectively. The SEM spectroscopy revealed that the pyrochlore exhibits a very dense microstructure with single-phase appearance. The absorption spectral analysis in the sharp absorption region revealed an indirect forbidden transitions band gap of 3.30 eV. The room temperature refractive index, which was calculated from the reflectance and transmittance data, allowed the identification of the dispersion and oscillator energies, static and lattice dielectric constants and static refractive index as 26.69 and 3.37 eV, 8.92 and 15.95 and 2.98, respectively. (C) 2010 Elsevier B.V. All rights reserved.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Mixing, Composites, X-ray methods, Optical properties

Turkish CoHE Thesis Center URL

Citation

12

WoS Q

Q1

Scopus Q

Source

Volume

496

Issue

1-2

Start Page

87

End Page

90

Collections