Semileptonic Λ<sub>b,c</sub> to nucleon transitions in full QCD at light cone

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc

Research Projects

Organizational Units

Organizational Unit
Physics Group
Atılım University Physics Division was established with the purpose of educating the first-year students of the Engineering and other Departments by providing the general physics courses and, in addition, to make scientific and technological researches at the universal level. Now adays, Physics Division provide the students of Engineering, School of Aviation and Mathematics Departments with the general physics lectures having international education quality. We have in the Group the facilities of the mechanics and electricity laboratories, where the students have the opportunity to realize the practice of the theoretical knowledge in physics. Beside the compulsory courses (General Physics I and General Physics II) there are also elective courses offered by the Group. The faculty members in the Group, whose research interests and fields are given in web-page of the Group in details, perform theoretical as well as experimental researches and make publications in SSC-index journals. Graduate program, with master of sciences and doctorate degree courses and theses, is offered in different scientific areas (for details, see the web-page of the Division). In the Physcis Division there are 6 faculty members, five research assistants, and one technician.

Journal Issue

Abstract

The tree-level semileptonic Lambda(b)-> pl nu and Lambda(c)-> nl nu transitions are investigated using the light cone QCD sum rules approach in full theory. The spin 1/2, Lambda(Q) baryon with Q=b or c, is considered by the most general form of its interpolating current. The time ordering product of the initial and transition currents is expanded in terms of the nucleon distribution amplitudes with different twists. Considering two sets of independent input parameters entering to the nucleon wave functions, namely, QCD sum rules and lattice QCD parameters, the related form factors and their heavy quark effective theory limits are calculated and compared with the existing predictions of other approaches. It is shown that our results satisfy the heavy quark symmetry relations for lattice input parameters and b case exactly and the maximum violation is for charm case and QCD sum rules input parameters. The obtained form factors are used to compute the transition rates both in full theory and heavy quark effective theory. A comparison of the results on decay rate of Lambda(b)-> pl nu with those predicted by other phenomenological methods or the same method in heavy quark effective theory with different interpolating current and distribution amplitudes of the Lambda(b) is also presented.

Description

Azizi, Kazem/0000-0003-3741-2167; Bayar, Melahat/0000-0002-5914-0126;

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

29

WoS Q

Scopus Q

Source

Volume

80

Issue

9

Start Page

End Page

Collections