A neural network model for the assessment of partners' performance in virtual enterprises

dc.authoridAmaitik, Saleh/0000-0001-7055-4461
dc.authorscopusid7004693507
dc.authorscopusid15727201300
dc.authorscopusid7006243664
dc.authorwosidAmaitik, Saleh/D-9824-2018
dc.contributor.authorSari, Burak
dc.contributor.authorAmaitik, Saleh
dc.contributor.authorKilic, S. Engin
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T14:33:06Z
dc.date.available2024-07-05T14:33:06Z
dc.date.issued2007
dc.departmentAtılım Universityen_US
dc.department-tempMiddle E Tech Univ, Dept Mech Engn, TR-06531 Ankara, Turkey; Atilim Univ, Dept Mfg Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionAmaitik, Saleh/0000-0001-7055-4461en_US
dc.description.abstractIn response to increasing international competition, enterprises have been investigating new ways of cooperating with each other to cope with today's unpredictable market behaviour. Advanced developments in information & communication technology (ICT) enabled reliable and fast cooperation to support real-time alliances. In this context, the virtual enterprise (VE) represents an appropriate cooperation alternative and competitive advantage for the enterprises. VE is a temporary network of independent companies or enterprises that can quickly bring together a set of core competencies to take advantage of market opportunity. In this emerging business model of VE, the key to enhancing the quality of decision making in the partner companies' performance evaluation function is to take advantage of the powerful computer-related concepts, tools and technique that have become available in the last few years. This paper attempts to introduce a neural network model, which is able to contribute to the extrapolation of the probable outcomes based on available pattern of events in a virtual enterprise. Quality, delivery and progress were selected as determinant factors effecting the performance assessment. Considering the features of partner performance assessment and neural network models, a back-propagation neural network that includes a two hidden layers was used to evaluate the partner performance.en_US
dc.identifier.citation11
dc.identifier.doi10.1007/s00170-006-0642-z
dc.identifier.endpage825en_US
dc.identifier.issn0268-3768
dc.identifier.issn1433-3015
dc.identifier.issue7-8en_US
dc.identifier.scopus2-s2.0-34548657269
dc.identifier.startpage816en_US
dc.identifier.urihttps://doi.org/10.1007/s00170-006-0642-z
dc.identifier.urihttps://hdl.handle.net/20.500.14411/883
dc.identifier.volume34en_US
dc.identifier.wosWOS:000249461600019
dc.identifier.wosqualityQ2
dc.institutionauthorKılıç, Sadık Engin
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectvirtual enterpriseen_US
dc.subjectneural networksen_US
dc.subjectpartners performanceen_US
dc.subjectback propagationen_US
dc.titleA neural network model for the assessment of partners' performance in virtual enterprisesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd70c9839-4358-47dd-834e-fc115cb0fca3
relation.isAuthorOfPublication.latestForDiscoveryd70c9839-4358-47dd-834e-fc115cb0fca3
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections