Spline Based Sparseness and Smoothness for Partially Nonlinear Model Via C-Fused Lasso

dc.authorscopusid 23974021700
dc.authorscopusid 36015912400
dc.authorscopusid 27968083600
dc.contributor.author Taylan, P.
dc.contributor.author Yerlikaya-¨Ozkurt, F.
dc.contributor.author Tez, M.
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-10-06T10:58:56Z
dc.date.available 2024-10-06T10:58:56Z
dc.date.issued 2025
dc.department Atılım University en_US
dc.department-temp Taylan P., Department of Mathematics, Dicle University, Diyarbakır, Turkey; Yerlikaya-¨Ozkurt F., Department of Industrial Engineering, Atılım University, Ankara, Turkey; Tez M., Department of Statistics, Marmara University, ˙Istanbul, Turkey en_US
dc.description.abstract One of the most beneficial and widely used models for data analysis are partially nonlinear models (PNLRM), which consists of parametric and nonparametric components. Since the model includes the coefficients of both the parametric and nonparametric parts, the complexity of the model will be high and its interpretation will be very difficult. In this study, we propose a procedure that not only achieves sparseness, but also smoothness for PNLRM to obtain a simpler model that better explains the relationship between the response and covariates. Thus, the fused Lasso problem is taken into account where nonparametric components are expressed as a spline basis function, and then the Fused Lasso estimation problem is built and expressed in terms of conic quadratic programming. Applications are conducted to evaluate the performance of the proposed method by considering commonly utilized measures. Promising results are obtained, especially in the data with nonlinearly correlated variables. © (2025), (American Institute of Mathematical Sciences). All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.3934/jimo.2024118
dc.identifier.endpage 1144 en_US
dc.identifier.issn 1547-5816
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85210097262
dc.identifier.scopusquality Q3
dc.identifier.startpage 1120 en_US
dc.identifier.uri https://doi.org/10.3934/jimo.2024118
dc.identifier.volume 21 en_US
dc.identifier.wos WOS:001309157500001
dc.identifier.wosquality Q4
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher American Institute of Mathematical Sciences en_US
dc.relation.ispartof Journal of Industrial and Management Optimization en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject continuous optimization en_US
dc.subject estimation en_US
dc.subject fused Lasso en_US
dc.subject Nonlinear model en_US
dc.subject nonparametric regression en_US
dc.subject spline function en_US
dc.title Spline Based Sparseness and Smoothness for Partially Nonlinear Model Via C-Fused Lasso en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Spline based sparseness and smoothness for partially nonlinear model via C-fused Lasso.pdf
Size:
719.26 KB
Format:
Adobe Portable Document Format

Collections