Spline Based Sparseness and Smoothness for Partially Nonlinear Model Via C-Fused Lasso

dc.authorscopusid23974021700
dc.authorscopusid36015912400
dc.authorscopusid27968083600
dc.contributor.authorTaylan, P.
dc.contributor.authorYerlikaya-¨Ozkurt, F.
dc.contributor.authorTez, M.
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-10-06T10:58:56Z
dc.date.available2024-10-06T10:58:56Z
dc.date.issued2025
dc.departmentAtılım Universityen_US
dc.department-tempTaylan P., Department of Mathematics, Dicle University, Diyarbakır, Turkey; Yerlikaya-¨Ozkurt F., Department of Industrial Engineering, Atılım University, Ankara, Turkey; Tez M., Department of Statistics, Marmara University, ˙Istanbul, Turkeyen_US
dc.description.abstractOne of the most beneficial and widely used models for data analysis are partially nonlinear models (PNLRM), which consists of parametric and nonparametric components. Since the model includes the coefficients of both the parametric and nonparametric parts, the complexity of the model will be high and its interpretation will be very difficult. In this study, we propose a procedure that not only achieves sparseness, but also smoothness for PNLRM to obtain a simpler model that better explains the relationship between the response and covariates. Thus, the fused Lasso problem is taken into account where nonparametric components are expressed as a spline basis function, and then the Fused Lasso estimation problem is built and expressed in terms of conic quadratic programming. Applications are conducted to evaluate the performance of the proposed method by considering commonly utilized measures. Promising results are obtained, especially in the data with nonlinearly correlated variables. © (2025), (American Institute of Mathematical Sciences). All rights reserved.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount0
dc.identifier.doi10.3934/jimo.2024118
dc.identifier.endpage1144en_US
dc.identifier.issn1547-5816
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85210097262
dc.identifier.scopusqualityQ3
dc.identifier.startpage1120en_US
dc.identifier.urihttps://doi.org/10.3934/jimo.2024118
dc.identifier.volume21en_US
dc.identifier.wosWOS:001309157500001
dc.identifier.wosqualityQ4
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.relation.ispartofJournal of Industrial and Management Optimizationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcontinuous optimizationen_US
dc.subjectestimationen_US
dc.subjectfused Lassoen_US
dc.subjectNonlinear modelen_US
dc.subjectnonparametric regressionen_US
dc.subjectspline functionen_US
dc.titleSpline Based Sparseness and Smoothness for Partially Nonlinear Model Via C-Fused Lassoen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Spline based sparseness and smoothness for partially nonlinear model via C-fused Lasso.pdf
Size:
719.26 KB
Format:
Adobe Portable Document Format

Collections