Band Offsets, Optical Conduction, and Microwave Band Filtering Characteristics of Γ-in<sub>2</Sub>se<sub>3< Heterojunctions
| dc.contributor.author | Qasrawi, Atef F. | |
| dc.contributor.author | Kmail, Reham R. | |
| dc.date.accessioned | 2024-07-05T15:39:27Z | |
| dc.date.available | 2024-07-05T15:39:27Z | |
| dc.date.issued | 2020 | |
| dc.description | Qasrawi, Atef Fayez/0000-0001-8193-6975 | en_US |
| dc.description.abstract | Herein, the design and experimental characterization of gamma-In2Se3/CuO interfaces are considered. Thin films of gamma-In(2)Se(3)are coated with thin layers of CuO at room temperature. The heterojunction device is structurally, morphologically, and optically characterized. It is observed that the coating of CuO onto gamma-In(2)Se(3)engenders the formation of CuSe(2)at the ultrathin interface. The gamma-In2Se3/CuO heterojunctions exhibit maximum possible conduction and valence band offsets of values 0.47 and 0.96 eV, respectively. The dielectric spectra display two dielectric resonance peaks at 2.96 and 1.78 eV. In addition, analyses of the optical conductivity spectra reveal accurate drift mobility and plasmon frequency values of 31.31 cm(2) Vs(-1)and 1.5 GHz, respectively. The ability of the device to control the signal propagation at gigahertz level is experimentally tested by the impedance spectroscopy technique which proved the ability of the device to behave as bandpass filters of notch frequency of 1.49 GHz. The gamma-In2Se3/CuO heterojunction devices are also observed to display terahertz cutoff frequency values of approximate to 24 THz in the infrared (IR) range of incident photon energy and approximate to 193 THz in the ultraviolet light range. The nonlinear optical performance of the device nominates it for use as terahertz/gigahertz band filters. | en_US |
| dc.description.sponsorship | Deanship of Scientific Research (DSR), Arab American University, Palestine [Cycle I 2019-2020]; DSR | en_US |
| dc.description.sponsorship | This work was funded by the Deanship of Scientific Research (DSR), Arab American University, Palestine, under grant No. (Cycle I 2019-2020). The authors, therefore, gratefully acknowledge the DSR technical and financial support. | en_US |
| dc.identifier.doi | 10.1002/pssb.202000231 | |
| dc.identifier.issn | 0370-1972 | |
| dc.identifier.issn | 1521-3951 | |
| dc.identifier.scopus | 2-s2.0-85089668947 | |
| dc.identifier.uri | https://doi.org/10.1002/pssb.202000231 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/3228 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley-v C H verlag Gmbh | en_US |
| dc.relation.ispartof | physica status solidi (b) | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | dielectric dispersion | en_US |
| dc.subject | drift mobility | en_US |
| dc.subject | gamma-In2Se3 | en_US |
| dc.subject | CuO | en_US |
| dc.subject | optical conduction | en_US |
| dc.title | Band Offsets, Optical Conduction, and Microwave Band Filtering Characteristics of Γ-in<sub>2</Sub>se<sub>3< Heterojunctions | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Qasrawi, Atef Fayez/0000-0001-8193-6975 | |
| gdc.author.scopusid | 6603962677 | |
| gdc.author.scopusid | 56766039000 | |
| gdc.author.wosid | Qasrawi, Atef Fayez/R-4409-2019 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Qasrawi, Atef F.; Kmail, Reham R.] Arab Amer Univ, Dept Phys, Jenin, Palestine; [Qasrawi, Atef F.] Atilim Univ, Fac Engn, Grp Phys, TR-06836 Ankara, Turkey | en_US |
| gdc.description.issue | 12 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.volume | 257 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W3049442296 | |
| gdc.identifier.wos | WOS:000561762500001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 9.0 | |
| gdc.oaire.influence | 2.9075966E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 9.7884145E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0210 nano-technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.88383935 | |
| gdc.openalex.normalizedpercentile | 0.75 | |
| gdc.opencitations.count | 9 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 11 | |
| gdc.scopus.citedcount | 11 | |
| gdc.virtual.author | Qasrawı, Atef Fayez Hasan | |
| gdc.wos.citedcount | 11 | |
| relation.isAuthorOfPublication | 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c | |
| relation.isAuthorOfPublication.latestForDiscovery | 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c | |
| relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
| relation.isOrgUnitOfPublication | dff2e5a6-d02d-4bef-8b9e-efebe3919b10 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | c3c9b34a-b165-4cd6-8959-dc25e91e206b |
