Reducibility of nickeliferous limonitic laterite ore from Central Anatolia

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Limonitic nickel laterite from Sivrihisar reserve in Turkey was reduced at 700-1100 degrees C by the addition of 5.74, 8.61 and 11.48 wt-% coal under an argon atmosphere. The run-of-mine ore and the reduced samples were studied using X-ray diffraction. The metallisation of Fe was found to be limited up to 900 degrees C, but increased rapidly at higher temperatures. The metallisation of Ni and Co increased when the temperature was increased from 700 to 800 degrees C, almost levelled off up to 900 degrees C and then increased up to 1100 degrees C. The results also showed that increased coal additions did not affect Fe metallisation up to 900 degrees C. At 1000 degrees C the metallisation of Fe became slightly better, but its effect was more pronounced at 1100 degrees C. The increased coal addition affected the nickel reduction equally at all temperatures, while it had no effect on the metallisation of Co.

Description

Eray, Said/0000-0001-7310-9726; TOPKAYA, YAVUZ/0009-0009-3671-3655; Keskinkilic, Ender/0000-0002-4186-0694

Keywords

Limonitic laterite, Reduction, Coal, Metallisation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

11

WoS Q

Q4

Scopus Q

Source

Volume

53

Issue

1

Start Page

26

End Page

37

Collections