The Existence of Optimal Approximate Solution Theorems for Generalized Α-Proximal Contraction Non-Self Mappings and Applications
| dc.contributor.author | Karapinar, Erdal | |
| dc.contributor.author | Sintunavarat, Wutiphol | |
| dc.date.accessioned | 2024-07-05T14:27:35Z | |
| dc.date.available | 2024-07-05T14:27:35Z | |
| dc.date.issued | 2013 | |
| dc.description | KARAPINAR, ERDAL/0000-0002-6798-3254; Sintunavarat, Wutiphol/0000-0002-0932-1332 | en_US |
| dc.description.abstract | In this paper, we investigate the sufficient conditions to find a best proximity point for a certain class of non-self mappings. It is well known that optimization problems can be transformed to the problems of the existence of a best proximity point. Hence, improvement in the best proximity point theory implicitly develops the theory of optimization. Our presented results generalize, extent and improve various well-known results on the topic in the literature. In particular, we consider some applications of our results to the best proximity point theorems on a class of metric spaces endowed with an arbitrary binary relation which involves the partially ordered metric spaces. | en_US |
| dc.identifier.doi | 10.1186/1687-1812-2013-323 | |
| dc.identifier.issn | 1687-1812 | |
| dc.identifier.scopus | 2-s2.0-84901763514 | |
| dc.identifier.uri | https://doi.org/10.1186/1687-1812-2013-323 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/258 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer international Publishing Ag | en_US |
| dc.relation.ispartof | Fixed Point Theory and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | approximately compact | en_US |
| dc.subject | best proximity point | en_US |
| dc.subject | binary relation | en_US |
| dc.subject | generalized alpha-proximal contraction of the first kind | en_US |
| dc.subject | generalized alpha-proximal contraction of the second kind | en_US |
| dc.title | The Existence of Optimal Approximate Solution Theorems for Generalized Α-Proximal Contraction Non-Self Mappings and Applications | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | KARAPINAR, ERDAL/0000-0002-6798-3254 | |
| gdc.author.id | Sintunavarat, Wutiphol/0000-0002-0932-1332 | |
| gdc.author.scopusid | 16678995500 | |
| gdc.author.scopusid | 30567861500 | |
| gdc.author.wosid | Sintunavarat, Wutiphol/AHE-9235-2022 | |
| gdc.author.wosid | KARAPINAR, ERDAL/H-3177-2011 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Karapinar, Erdal] Atilim Univ, Dept Math, Fac Sci & Art, TR-06836 Ankara, Turkey; [Sintunavarat, Wutiphol] Thammasat Univ, Rangsit Ctr, Dept Math & Stat, Fac Sci & Technol, Pathum Thani 12121, Thailand | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 2013 | |
| gdc.identifier.openalex | W2153088752 | |
| gdc.identifier.wos | WOS:000328702300002 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 3.2548217E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | binary relation | |
| gdc.oaire.keywords | generalized \(\alpha\)-proximal contraction of the second kind | |
| gdc.oaire.keywords | Fixed-point and coincidence theorems (topological aspects) | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces | |
| gdc.oaire.keywords | approximately compact | |
| gdc.oaire.keywords | generalized \(\alpha\)-proximal contraction of the first kind | |
| gdc.oaire.keywords | best proximity point | |
| gdc.oaire.keywords | Geometry and Topology | |
| gdc.oaire.keywords | Special maps on metric spaces | |
| gdc.oaire.popularity | 2.250802E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.5610687 | |
| gdc.openalex.normalizedpercentile | 0.95 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 14 | |
| gdc.scopus.citedcount | 14 | |
| gdc.virtual.author | Karapınar, Erdal | |
| gdc.wos.citedcount | 13 | |
| relation.isAuthorOfPublication | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isAuthorOfPublication.latestForDiscovery | 69e25f84-afec-4c79-a19a-1e7811d90143 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
