Novel Global Robust Stability Criterion for Neural Networks With Delay

dc.contributor.author Singh, Vimal
dc.contributor.author Sıngh, Vımal
dc.contributor.author Sıngh, Vımal
dc.contributor.other Department of Mechatronics Engineering
dc.contributor.other Department of Mechatronics Engineering
dc.date.accessioned 2024-07-05T15:11:50Z
dc.date.available 2024-07-05T15:11:50Z
dc.date.issued 2009
dc.description.abstract A novel criterion for the global robust stability of Hopfield-type interval neural networks with delay is presented. An example illustrating the improvement of the present criterion over several recently reported criteria is given. (C) 2008 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.chaos.2008.01.001
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.issn 0375-9601
dc.identifier.scopus 2-s2.0-67349096686
dc.identifier.uri https://doi.org/10.1016/j.chaos.2008.01.001
dc.identifier.uri https://hdl.handle.net/20.500.14411/1501
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Physics Letters A
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Novel Global Robust Stability Criterion for Neural Networks With Delay en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 353 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 348 en_US
gdc.description.volume 41 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2022590587
gdc.identifier.wos WOS:000267182500036
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 26.0
gdc.oaire.influence 6.4360455E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Stability theory of functional-differential equations
gdc.oaire.keywords Robust stability
gdc.oaire.keywords Neural networks for/in biological studies, artificial life and related topics
gdc.oaire.keywords equilibrium analysis
gdc.oaire.keywords Hopfield neural networks
gdc.oaire.keywords dynamical interval neural networks
gdc.oaire.keywords neural networks
gdc.oaire.keywords Qualitative investigation and simulation of models involving functional-differential equations
gdc.oaire.keywords Neural nets applied to problems in time-dependent statistical mechanics
gdc.oaire.keywords global robust stability
gdc.oaire.popularity 1.3066432E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 4.78887145
gdc.openalex.normalizedpercentile 0.96
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 11
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.virtual.author Sıngh, Vımal
gdc.wos.citedcount 13
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections