Investigation of the effect of graphitized carbon nanotube catalyst support for high temperature PEM fuel cells

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this study, it is aimed to investigate the graphitization effect on the performance of the multi walled carbon nanotube catalyst support for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. Microwave synthesis method was selected to load Pt nanoparticles on both CNT materials. Prepared catalyst was analyzed thermal analysis (TGA), Transmission Electron Microscopy (TEM) and corrosion tests. TEM analysis proved that a distribution of Pt nanoparticles with a size range of 2.8-3.1 nm was loaded on the Pt/CNT and Pt/GCNT catalysts. Gas diffusion electrodes (GDE) were manufactured by an ultrasonic spray method with synthesized catalyst. Polybenzimidazole (PBI) membrane based Membrane Electrode Assembly (MEA) was prepared for observe the performance of the prepared catalysts. The synthesized catalysts were also tested in a HT-PEMFC environment with a 5 cm(2) active area at 160 degrees C without humidification. This study demonstrates the feasibility of using the microwave synthesis method as a fast and effective method for preparing high performance Pt/CNT and Pt/GCNT catalyst for HT-PEMFC. The HT-PEMFC performance evaluation shows current densities of 0.36 A/cm(2)0.30 A/cm(2) and 0.20 A/cm(2) for the MEAs prepared with Pt/GCNT, Pt/CNT and Pt/C catalysts @ 0.6 V operating voltage, respectively. AST (Accelerated Stress Test) analyzes of MEAs prepared with Pt/GCNT and Pt/CNT catalysts were also performed and compared with Pt/C catalyst. According to current density @ 0.6 V after 10,000 potential cycles, Pt/GCNT, Pt/CNT and Pt/C catalysts can retain 61%, 67% and 60% of their performance, respectively. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702

Keywords

PEM fuel cell, High temperature, Carbon nanotube, Graphitization

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
28

Source

7th Global Conference on Global Warming -- JUN 24-28, 2018 -- Izmir, TURKEY

Volume

45

Issue

5

Start Page

3609

End Page

3617

Collections

PlumX Metrics
Citations

CrossRef : 1

Scopus : 34

Captures

Mendeley Readers : 45

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.93549033

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo