Functions Whose Smoothness Is Not Improved Under the Limit <i>q</I>-bernstein Operator

dc.contributor.author Ostrovska, Sofiya
dc.date.accessioned 2024-07-05T15:11:06Z
dc.date.available 2024-07-05T15:11:06Z
dc.date.issued 2012
dc.description.abstract The limit q-Bernstein operator B-q emerges naturally as a modification of the Szasz-Mirakyan operator related to the Euler probability distribution. At the same time, this operator serves as the limit for a sequence of the q-Bernstein polynomials with 0 < q < 1. Over the past years, the limit q-Bernstein operator has been studied widely from different perspectives. Its approximation, spectral, and functional-analytic properties, probabilistic interpretation, the behavior of iterates, and the impact on the analytic characteristics of functions have been examined. It has been proved that under a certain regularity condition, B-q improves the smoothness of a function which does not satisfy the Holder condition. The purpose of this paper is to exhibit 'exceptional' functions whose smoothness is not improved under the limit q-Bernstein operator. MSC: 26A15; 26A16; 41A36 en_US
dc.identifier.doi 10.1186/1029-242X-2012-297
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-84876592357
dc.identifier.uri https://doi.org/10.1186/1029-242X-2012-297
dc.identifier.uri https://hdl.handle.net/20.500.14411/1406
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Journal of Inequalities and Applications
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject limit q-Bernstein operator en_US
dc.subject Holder condition en_US
dc.subject modulus of continuity en_US
dc.title Functions Whose Smoothness Is Not Improved Under the Limit <i>q</I>-bernstein Operator en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, Ankara, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 2012
gdc.description.wosquality Q1
gdc.identifier.openalex W2139344815
gdc.identifier.wos WOS:000317846800006
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6250386E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Discrete Mathematics and Combinatorics
gdc.oaire.keywords Analysis
gdc.oaire.keywords Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
gdc.oaire.keywords Lipschitz (Hölder) classes
gdc.oaire.keywords modulus of continuity
gdc.oaire.keywords Approximation by positive operators
gdc.oaire.keywords limit \(q\)-Bernstein operator
gdc.oaire.keywords Hölder condition
gdc.oaire.popularity 5.715725E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.31763389
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 2
gdc.plumx.crossrefcites 2
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Ostrovska, Sofiya
gdc.wos.citedcount 1
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections