Functions Whose Smoothness Is Not Improved Under the Limit <i>q</I>-bernstein Operator
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.date.accessioned | 2024-07-05T15:11:06Z | |
| dc.date.available | 2024-07-05T15:11:06Z | |
| dc.date.issued | 2012 | |
| dc.description.abstract | The limit q-Bernstein operator B-q emerges naturally as a modification of the Szasz-Mirakyan operator related to the Euler probability distribution. At the same time, this operator serves as the limit for a sequence of the q-Bernstein polynomials with 0 < q < 1. Over the past years, the limit q-Bernstein operator has been studied widely from different perspectives. Its approximation, spectral, and functional-analytic properties, probabilistic interpretation, the behavior of iterates, and the impact on the analytic characteristics of functions have been examined. It has been proved that under a certain regularity condition, B-q improves the smoothness of a function which does not satisfy the Holder condition. The purpose of this paper is to exhibit 'exceptional' functions whose smoothness is not improved under the limit q-Bernstein operator. MSC: 26A15; 26A16; 41A36 | en_US |
| dc.identifier.doi | 10.1186/1029-242X-2012-297 | |
| dc.identifier.issn | 1029-242X | |
| dc.identifier.scopus | 2-s2.0-84876592357 | |
| dc.identifier.uri | https://doi.org/10.1186/1029-242X-2012-297 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1406 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Journal of Inequalities and Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | limit q-Bernstein operator | en_US |
| dc.subject | Holder condition | en_US |
| dc.subject | modulus of continuity | en_US |
| dc.title | Functions Whose Smoothness Is Not Improved Under the Limit <i>q</I>-bernstein Operator | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Math, Ankara, Turkey | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 2012 | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2139344815 | |
| gdc.identifier.wos | WOS:000317846800006 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6250386E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Discrete Mathematics and Combinatorics | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable | |
| gdc.oaire.keywords | Lipschitz (Hölder) classes | |
| gdc.oaire.keywords | modulus of continuity | |
| gdc.oaire.keywords | Approximation by positive operators | |
| gdc.oaire.keywords | limit \(q\)-Bernstein operator | |
| gdc.oaire.keywords | Hölder condition | |
| gdc.oaire.popularity | 5.715725E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.31763389 | |
| gdc.openalex.normalizedpercentile | 0.63 | |
| gdc.opencitations.count | 2 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Ostrovska, Sofiya | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
