Interaction between assembled 3D honeycomb cells produced from high density polyethylene and a cohesionless soil

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Sage Publications Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Civil Engineering
(2000)
The Atılım University Department of Civil Engineering was founded in 2000 as a pioneer for the Departments of Civil Engineering among the foundation schools of Ankara. It offers education in English. The Department of Civil Engineering has an academic staff qualified in all areas of the education offered. In addition to a high level of academic learning that benefits from learning opportunities through practice at its seven laboratories, the Department also offers a Cooperative Education program conducted in cooperation with renowned organizations in the construction sector. Accredited by MÜDEK (Association of Evaluation and Accreditation of Engineering Programs) (in 2018), our Department has been granted the longest period of accreditation to ever achieve through the association (six years). The accreditation is recognized by ENAEE (European Network for Accreditation of Engineering Education), and other international accreditation boards.
Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Abstract

Assembled 3D high-density polyethylene honeycomb cells, providing confinement to arrest spreading of the soil in cells and creating relatively stiff bed that redistributes footing pressure over wider area, were used in the present study to enhance load-carrying capacity and to reduce settlement of base materials under a foundation. The effects of various test parameters including width, height, number of layers of the 3D honeycomb cells, vertical distance between layers of the cells and depth of stress zone of the foundation were studied. The test results indicated that considerable improvement in the load-carrying capacity (congruent to 3.0) and reduction in settlement of the foundation (congruent to 62%) were obtained with the implementation of the single layer of the 3D cells into cohesionless soils. The optimum effective distance between two layers of the 3D cells was 0.142 times the width of foundation, the ratio of effective width of 3D cells to the foundation was about 4.2 and the depth of influence stress zone of the foundation was about two times the width of the foundation.

Description

Keywords

3D honeycomb cells, polyethylene plastic, geocell, multi-layered, bearing pressure, footing settlement, interaction, reinforcement, sand

Turkish CoHE Thesis Center URL

Fields of Science

Citation

11

WoS Q

Q2

Scopus Q

Source

Volume

31

Issue

12

Start Page

828

End Page

836

Collections