Acoustic Phonons Scattering Mobility and Carrier Effective Mass in In<sub>6</Sub>s<sub>7< Crystals
| dc.contributor.author | Qasrawi, A. F. | |
| dc.contributor.author | Gasanly, N. M. | |
| dc.contributor.other | Department of Electrical & Electronics Engineering | |
| dc.contributor.other | 15. Graduate School of Natural and Applied Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:33:32Z | |
| dc.date.available | 2024-07-05T14:33:32Z | |
| dc.date.issued | 2006 | |
| dc.description | Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686 | en_US |
| dc.description.abstract | Systematic dark electrical resistivity and Hall coefficient measurements have been carried out in the temperature range of 170-320 K on n-type In6S7 crystals. The analysis of the electrical resistivity and carrier concentration reveals the intrinsic type of conduction with an average energy band gap of similar to 0.75 eV The carrier effective masses of the conduction and valence bands were calculated from the intrinsic temperature-dependent carrier concentration data and were found to be 0.565m(0) and 2.020m(0), respectively. The temperature-dependent Hall mobility was observed to follow the mu alpha T-3/2 law and was analyzed assuming the domination of acoustic phonons scattering. The acoustic phonons scattering mobility was calculated from the crystal's structural data with no assumptions. The experimental Hall mobility data of In6S7 crystals coincides with the theoretical acoustic phonons scattering mobility data with acoustic deformation potential of 6.4 eV. (c) 2006 Elsevier B.V. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.jallcom.2006.02.037 | |
| dc.identifier.issn | 0925-8388 | |
| dc.identifier.scopus | 2-s2.0-33751017962 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jallcom.2006.02.037 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/943 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Sa | en_US |
| dc.relation.ispartof | Journal of Alloys and Compounds | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | semiconductors | en_US |
| dc.subject | crystal growth | en_US |
| dc.subject | X-ray diffraction | en_US |
| dc.subject | electronic transport | en_US |
| dc.title | Acoustic Phonons Scattering Mobility and Carrier Effective Mass in In<sub>6</Sub>s<sub>7< Crystals | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Gasanly, Nizami/0000-0002-3199-6686 | |
| gdc.author.id | Qasrawi, Atef Fayez/0000-0001-8193-6975 | |
| gdc.author.id | Gasanly, Nizami/0000-0002-3199-6686 | |
| gdc.author.institutional | Qasrawı, Atef Fayez Hasan | |
| gdc.author.scopusid | 6603962677 | |
| gdc.author.scopusid | 35580905900 | |
| gdc.author.wosid | Gasanly, Nizami/HRE-1447-2023 | |
| gdc.author.wosid | Qasrawi, Atef Fayez/R-4409-2019 | |
| gdc.author.wosid | Gasanly, Nizami/ABA-2249-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Elect & Elect Engn, TR-06836 Ankara, Turkey; Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey | en_US |
| gdc.description.endpage | 66 | en_US |
| gdc.description.issue | 1-2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 64 | en_US |
| gdc.description.volume | 426 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2084231613 | |
| gdc.identifier.wos | WOS:000243085600012 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.9387428E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.3507315E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0210 nano-technology | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.304 | |
| gdc.openalex.normalizedpercentile | 0.67 | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 5 | |
| gdc.scopus.citedcount | 5 | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c | |
| relation.isAuthorOfPublication.latestForDiscovery | 1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c | |
| relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
| relation.isOrgUnitOfPublication | dff2e5a6-d02d-4bef-8b9e-efebe3919b10 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | c3c9b34a-b165-4cd6-8959-dc25e91e206b |