The Integrated Usage of Lbp and Hog Transformations and Machine Learning Algorithms for Age Range Prediction From Facial Images

dc.authoridŞengül, Gökhan/0000-0003-2273-4411
dc.authorscopusid57204921319
dc.authorscopusid8402817900
dc.authorwosidSengul, Gokhan/G-8213-2016
dc.authorwosidŞengül, Gökhan/AAA-2788-2022
dc.contributor.authorKhalifa, Tariq
dc.contributor.authorŞengül, Gökhan
dc.contributor.authorSengul, Gokhan
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:27:27Z
dc.date.available2024-07-05T15:27:27Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Khalifa, Tariq] Al Jabal Al Gharbi Univ, Gharian 64200, Libya; [Sengul, Gokhan] Atilim Univ, TR-06836 Incek Ankara, Turkeyen_US
dc.descriptionŞengül, Gökhan/0000-0003-2273-4411en_US
dc.description.abstractAge prediction is an active study field that can be used in many computer vision problems due to its importance and effectiveness. In this paper, we present extensive experiments and provide an efficient and accurate approach for age range prediction of people from facial images. First, we apply image resizing to unify all images' size, and Histogram Equalization technique to reduce the illumination effects on all facial images taken from FG-NET and UTD aging databases. Second, Histogram of Oriented Gradient (HOG) and Local Binary Pattern (LBP) are used to extract the features of these images, and then we combined both HOG and LBP features in order to attain better prediction. Finally, Support Vector Machine (SVM) and k-Nearest Neighbour (k-NN) are used for the classification processes. In addition, k-fold, Leave-One-Out (LOO) and Confusion Matrix (CM) are used to evaluate the performance of proposed methods. The extensive and intensified experiments show that combining HOG and LBP features improved the age range predicting performance up to 99.87%.en_US
dc.identifier.citation1
dc.identifier.doi10.17559/TV-20170308030459
dc.identifier.endpage1362en_US
dc.identifier.issn1330-3651
dc.identifier.issn1848-6339
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85057778233
dc.identifier.scopusqualityQ3
dc.identifier.startpage1356en_US
dc.identifier.urihttps://doi.org/10.17559/TV-20170308030459
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2657
dc.identifier.volume25en_US
dc.identifier.wosWOS:000448434200013
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherUniv Osijek, Tech Facen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectage predictionen_US
dc.subjectfacial imagesen_US
dc.subjectHistogram of Oriented Gradient (HOG)en_US
dc.subjectkNNen_US
dc.subjectLocal Binary Pattern (LBP)en_US
dc.subjectSVMen_US
dc.titleThe Integrated Usage of Lbp and Hog Transformations and Machine Learning Algorithms for Age Range Prediction From Facial Imagesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication.latestForDiscoveryf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections