Particle Swarm Optimization of the Spectral and Energy Efficiency of an Scma-Based Heterogeneous Cellular Network

dc.authoridKoyuncu, Murat/0000-0003-1958-5945
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridNoma-Osaghae, Etinosa/0000-0003-4030-2321
dc.authorscopusid57195636218
dc.authorscopusid56962766700
dc.authorscopusid35068989100
dc.authorscopusid7004305370
dc.authorwosidKoyuncu, Murat/C-9407-2017
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidNoma-Osaghae, Etinosa/K-4256-2017
dc.contributor.authorNoma-Osaghae, Etinosa
dc.contributor.authorMisra, Sanjay
dc.contributor.authorAhuja, Ravin
dc.contributor.authorKoyuncu, Murat
dc.contributor.otherInformation Systems Engineering
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:17:42Z
dc.date.available2024-07-05T15:17:42Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Noma-Osaghae, Etinosa; Ahuja, Ravin] Covenant Univ, Ctr ICT ICE, Ota, Ogun State, Nigeria; [Misra, Sanjay] Ostfold Univ Coll, Dept Comp Sci & Commun, Halden, Norway; [Ahuja, Ravin] Delhi Skill, Dwarka Campus, Delhi, India; [Ahuja, Ravin] Entrepreneurship Univ, Delhi, India; [Koyuncu, Murat] Atilim Univ, Dept Informat Syst Engn, Ankara, Turkeyen_US
dc.descriptionKoyuncu, Murat/0000-0003-1958-5945; Misra, Sanjay/0000-0002-3556-9331; Noma-Osaghae, Etinosa/0000-0003-4030-2321en_US
dc.description.abstractBackground The effect of stochastic small base station (SBS) deployment on the energy efficiency (EE) and spectral efficiency (SE) of sparse code multiple access (SCMA)-based heterogeneous cellular networks (HCNs) is still mostly unknown. Aim This research study seeks to provide insight into the interaction between SE and EE in SBS sleep-mode enabled SCMA-based HCNs. Methodology A model that characterizes the energy-spectral-efficiency (ESE) of a two-tier SBS sleep-mode enabled SCMA-based HCN was derived. A multiobjective optimization problem was formulated to maximize the SE and EE of the SCMA-based HCN simultaneously. The multiobjective optimization problem was solved using a proposed weighted sum modified particle swarm optimization algorithm (PSO). A comparison was made between the performance of the proposed weighted sum modified PSO algorithm and the genetic algorithm (GA) and the case where the SCMA-based HCN is unoptimized. Results The Pareto-optimal front generated showed a simultaneous maximization of the SE and EE of the SCMA-based HCN at high traffic levels and a convex front that allows network operators to select the SE-EE tradeoff at low traffic levels flexibly. The proposed PSO algorithm offers a higher SBS density, and a higher SBS transmit power at high traffic levels than at low traffic levels. The unoptimized SCMA-based HCN achieves an 80% lower SE and a 51% lower EE than the proposed PSO optimized SCMA-based HCN. The optimum SE and EE achieved by the SCMA-based HCN using the proposed PSO algorithm or the GA are comparable, but the proposed PSO uses a 51.85% lower SBS density and a 35.96% lower SBS transmit power to achieve the optimal SE and EE at moderate traffic levels. Conclusion In sleep-mode enabled SCMA-based HCNs, network engineers have to decide the balance of SBS density and SBS transmit power that helps achieve the desired SE and EE.en_US
dc.identifier.citationcount1
dc.identifier.doi10.1002/ett.4508
dc.identifier.issn2161-3915
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85129835106
dc.identifier.urihttps://doi.org/10.1002/ett.4508
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1773
dc.identifier.volume33en_US
dc.identifier.wosWOS:000793749100001
dc.identifier.wosqualityQ3
dc.institutionauthorKoyuncu, Murat
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount4
dc.subject[No Keyword Available]en_US
dc.titleParticle Swarm Optimization of the Spectral and Energy Efficiency of an Scma-Based Heterogeneous Cellular Networken_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication
relation.isAuthorOfPublication948643aa-7723-4c65-8da8-fcc884405cd1
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery948643aa-7723-4c65-8da8-fcc884405cd1
relation.isOrgUnitOfPublicationcf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverycf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Collections