Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables

dc.authorid Kazemzadeh Azad, Saeid/0000-0001-9309-607X
dc.authorscopusid 57193753354
dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.other Department of Civil Engineering
dc.date.accessioned 2024-07-05T15:29:07Z
dc.date.available 2024-07-05T15:29:07Z
dc.date.issued 2017
dc.department Atılım University en_US
dc.department-temp [Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
dc.description Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract The advent of modern computing technologies paved the way for development of numerous efficient structural design optimization tools in the recent decades. In the present study sizing optimization problem of steel truss structures having numerous discrete variables is tackled using combined forms of recently proposed metaheuristic techniques. Three guided, and three guided hybrid metaheuristic algorithms are developed by integrating a design oriented strategy to the stochastic search properties of three recently proposed metaheuristic optimization techniques, namely adaptive dimensional search, modified big bang-big crunch, and exponential big bang-big crunch algorithms. The performances of the proposed guided, and guided hybrid metaheuristic algorithms are compared to those of standard variants through optimum design of real-size steel truss structures with up to 728 design variables according to AISC-LRFD specification. The numerical results reveal that the hybrid form of adaptive dimensional search and exponential big bang-big crunch algorithm is the most promising algorithm amongst the other investigated techniques. en_US
dc.identifier.citationcount 40
dc.identifier.doi 10.1007/s00158-016-1634-8
dc.identifier.endpage 2180 en_US
dc.identifier.issn 1615-147X
dc.identifier.issn 1615-1488
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85003952923
dc.identifier.scopusquality Q1
dc.identifier.startpage 2159 en_US
dc.identifier.uri https://doi.org/10.1007/s00158-016-1634-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/2870
dc.identifier.volume 55 en_US
dc.identifier.wos WOS:000400601200014
dc.identifier.wosquality Q1
dc.institutionauthor Azad, Saeıd Kazemzadeh
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 43
dc.subject Discrete sizing optimization en_US
dc.subject Steel trusses en_US
dc.subject Metaheuristic algorithms en_US
dc.subject Adaptive dimensional search en_US
dc.subject Big bang-big crunch algorithm en_US
dc.subject AISC-LRFD en_US
dc.title Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables en_US
dc.type Article en_US
dc.wos.citedbyCount 44
dspace.entity.type Publication
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication.latestForDiscovery 238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Collections