Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables

dc.contributor.author Azad, Saeid Kazemzadeh
dc.date.accessioned 2024-07-05T15:29:07Z
dc.date.available 2024-07-05T15:29:07Z
dc.date.issued 2017
dc.description Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract The advent of modern computing technologies paved the way for development of numerous efficient structural design optimization tools in the recent decades. In the present study sizing optimization problem of steel truss structures having numerous discrete variables is tackled using combined forms of recently proposed metaheuristic techniques. Three guided, and three guided hybrid metaheuristic algorithms are developed by integrating a design oriented strategy to the stochastic search properties of three recently proposed metaheuristic optimization techniques, namely adaptive dimensional search, modified big bang-big crunch, and exponential big bang-big crunch algorithms. The performances of the proposed guided, and guided hybrid metaheuristic algorithms are compared to those of standard variants through optimum design of real-size steel truss structures with up to 728 design variables according to AISC-LRFD specification. The numerical results reveal that the hybrid form of adaptive dimensional search and exponential big bang-big crunch algorithm is the most promising algorithm amongst the other investigated techniques. en_US
dc.identifier.doi 10.1007/s00158-016-1634-8
dc.identifier.issn 1615-147X
dc.identifier.issn 1615-1488
dc.identifier.scopus 2-s2.0-85003952923
dc.identifier.uri https://doi.org/10.1007/s00158-016-1634-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/2870
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Structural and Multidisciplinary Optimization
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Discrete sizing optimization en_US
dc.subject Steel trusses en_US
dc.subject Metaheuristic algorithms en_US
dc.subject Adaptive dimensional search en_US
dc.subject Big bang-big crunch algorithm en_US
dc.subject AISC-LRFD en_US
dc.title Enhanced Hybrid Metaheuristic Algorithms for Optimal Sizing of Steel Truss Structures With Numerous Discrete Variables en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kazemzadeh Azad, Saeid/0000-0001-9309-607X
gdc.author.scopusid 57193753354
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Azad, Saeid Kazemzadeh] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
gdc.description.endpage 2180 en_US
gdc.description.issue 6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 2159 en_US
gdc.description.volume 55 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2563648672
gdc.identifier.wos WOS:000400601200014
gdc.oaire.diamondjournal false
gdc.oaire.impulse 15.0
gdc.oaire.influence 4.4126836E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.1680403E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0201 civil engineering
gdc.openalex.collaboration National
gdc.openalex.fwci 6.580529
gdc.openalex.normalizedpercentile 0.97
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 40
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 32
gdc.plumx.scopuscites 45
gdc.scopus.citedcount 45
gdc.virtual.author Azad, Saeıd Kazemzadeh
gdc.wos.citedcount 47
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 238c4130-e9ea-4b1c-9dea-772c4a0dad39

Files

Collections