Finite Element Analysis of Frames with Reinforced Concrete Encased Steel Composite Columns

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Civil Engineering
(2000)
The Atılım University Department of Civil Engineering was founded in 2000 as a pioneer for the Departments of Civil Engineering among the foundation schools of Ankara. It offers education in English. The Department of Civil Engineering has an academic staff qualified in all areas of the education offered. In addition to a high level of academic learning that benefits from learning opportunities through practice at its seven laboratories, the Department also offers a Cooperative Education program conducted in cooperation with renowned organizations in the construction sector. Accredited by MÜDEK (Association of Evaluation and Accreditation of Engineering Programs) (in 2018), our Department has been granted the longest period of accreditation to ever achieve through the association (six years). The accreditation is recognized by ENAEE (European Network for Accreditation of Engineering Education), and other international accreditation boards.

Journal Issue

Abstract

Structural frame systems that consists of concrete-encased-steel-embedded composite columns and reinforced concrete beams are typically used in mid-rise to tall buildings. In order to understand their overall structural behavior, a total of 12 frame models with high and low ductility features were constructed and analyzed using LS-DYNA software. Two of these models were validated using the results of previously tested frames. The remaining 10 models were studied to predict the behavior of frames with varying concrete strengths, reinforcement configurations, and structural steel sections under vertical and lateral loads. The results were investigated in terms of cracks and failure patterns, load-deflection relationships, energy dissipation, and stiffness degradation. The analytical results indicated that the high ductile frame models showed slightly better lateral load carrying performances compared to low ductility frame models. Moreover, the analytical studies demonstrated that the existence of structural steel in a column, regardless of its cross-sectional shape, was the most important parameter in improving the lateral load carrying capacity of a frame.

Description

Tunc, Gokhan/0000-0002-8307-1060; Othman, Mohammed Moatasem Othman/0000-0002-1717-8601

Keywords

composite connection, concrete-encased steel composite column, ductility, finite element modelling

Turkish CoHE Thesis Center URL

Fields of Science

Citation

4

WoS Q

Scopus Q

Source

Volume

12

Issue

3

Start Page

End Page

Collections