A multi-domain direct boundary element formulation for particulate flow in microchannels
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Sci Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
In the present study, a multi-domain boundary element formulation is developed for high surface-area-to-volume ratio problems (i.e. particulate flow in high aspect ratio microfluidic channels, in a porous medium or in microfluidic devices with repetitive structures). The solution domain is decomposed into subdomains and the variable condensation technique is implemented. The solution matrices are built for each subdomain, and the matrices are updated at each time step only for the subdomains in which the particles move at each time step. Ghost domains, which are fictitious domains encapsulating the interfaces between the subdomains, are also introduced in the formulation to treat the particles crossing the interfaces between the subdomains. The formulation reveals that the computation of the subdomain matrices is further simplified for solution domains composed of periodic structures. The results of our study revealed that speed-up values as high as 50 is achievable with the current formulation.
Description
Cetin, Barbaros/0000-0001-9824-4000; Baranoglu, Besim/0000-0003-2005-050X
Keywords
BEM, Multi-domain, Particulate flow, Particle tracking
Turkish CoHE Thesis Center URL
Fields of Science
Citation
4
WoS Q
Q1
Scopus Q
Source
Volume
132
Issue
Start Page
221
End Page
230