A multi-domain direct boundary element formulation for particulate flow in microchannels

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

In the present study, a multi-domain boundary element formulation is developed for high surface-area-to-volume ratio problems (i.e. particulate flow in high aspect ratio microfluidic channels, in a porous medium or in microfluidic devices with repetitive structures). The solution domain is decomposed into subdomains and the variable condensation technique is implemented. The solution matrices are built for each subdomain, and the matrices are updated at each time step only for the subdomains in which the particles move at each time step. Ghost domains, which are fictitious domains encapsulating the interfaces between the subdomains, are also introduced in the formulation to treat the particles crossing the interfaces between the subdomains. The formulation reveals that the computation of the subdomain matrices is further simplified for solution domains composed of periodic structures. The results of our study revealed that speed-up values as high as 50 is achievable with the current formulation.

Description

Cetin, Barbaros/0000-0001-9824-4000; Baranoglu, Besim/0000-0003-2005-050X

Keywords

BEM, Multi-domain, Particulate flow, Particle tracking

Turkish CoHE Thesis Center URL

Citation

4

WoS Q

Q1

Scopus Q

Source

Volume

132

Issue

Start Page

221

End Page

230

Collections