ANALYSIS OF NEUROONCOLOGICAL DATA TO PREDICT SUCCESS OF OPERATION THROUGH CLASSIFICATION

dc.authorid Cagiltay, Nergiz/0000-0003-0875-9276
dc.authorid Börcek, Alp Özgün/0000-0002-6222-382X
dc.authorid Maras, Hadi Hakan/0000-0001-5117-3938
dc.authorscopusid 57192990689
dc.authorscopusid 8895480900
dc.authorscopusid 24333488200
dc.authorscopusid 16237826800
dc.authorscopusid 56875440000
dc.authorwosid Cagiltay, Nergiz/O-3082-2019
dc.authorwosid Börcek, Alp Özgün/O-6840-2017
dc.authorwosid Maras, Hadi Hakan/G-1236-2017
dc.contributor.author Bagherzadi, Negin
dc.contributor.author Borcek, Alp Ozgun
dc.contributor.author Tokdemir, Gul
dc.contributor.author Cagiltay, Nergiz
dc.contributor.author Maras, H. Hakan
dc.contributor.other Computer Engineering
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T14:32:24Z
dc.date.available 2024-07-05T14:32:24Z
dc.date.issued 2016
dc.department Atılım University en_US
dc.department-temp [Bagherzadi, Negin] Middle East Tech Univ, Dept Neurosci & Neurotechnol, Ankara, Turkey; [Borcek, Alp Ozgun] Gazi Univ, Fac Med, Dept Neurosurg, Ankara, Turkey; [Tokdemir, Gul; Maras, H. Hakan] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Cagiltay, Nergiz] Atilim Univ, Software Engn Dept, Ankara, Turkey en_US
dc.description Cagiltay, Nergiz/0000-0003-0875-9276; Börcek, Alp Özgün/0000-0002-6222-382X; Maras, Hadi Hakan/0000-0001-5117-3938 en_US
dc.description.abstract Data mining algorithms have been applied in various fields of medicine to get insights about diagnosis and treatment of certain diseases. This gives rise to more research on personalized medicine as patient data can be utilized to predict outcomes of certain treatment procedures. Accordingly, this study aims to create a model to provide decision support for surgeons in Neurooncology surgery. For this purpose, we have analyzed clinical pathology records of Neurooncology patients through various classification algorithms, namely Support Vector Machine, Multi Perceptron and Naive Bayes methods, and compared their performances with the aim of predicting surgery complication. A large number of factors have been considered to classify and predict percentage of patient's complication in surgery. Some of the factors found to be predictive were age, sex, clinical presentation, previous surgery type etc. For classification models built up using Support Vector Machine, Naive Bayes and Multi Perceptron, Classification trials for Support Vector Machine have shown %77.47 generalization accuracy, which was established by 5-fold cross-validation. en_US
dc.description.sponsorship National Science Association-TUBITAK (CAN project Tubitak 1003) [113S094]; TUBITAK 1003 program en_US
dc.description.sponsorship This study is conducted in the frame of CAN-Neuronavigation system Development Project supported by National Science Association-TUBITAK (CAN project Tubitak 1003 support, Project No: 113S094). The authors would like to thank the support of TUBITAK 1003 program for realizing this research. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1145/2975167.2985645
dc.identifier.endpage 486 en_US
dc.identifier.isbn 9781450342254
dc.identifier.scopus 2-s2.0-85009724166
dc.identifier.startpage 485 en_US
dc.identifier.uri https://doi.org/10.1145/2975167.2985645
dc.identifier.uri https://hdl.handle.net/20.500.14411/806
dc.identifier.wos WOS:000433385100061
dc.institutionauthor Tokdemir, Gül
dc.institutionauthor Çağıltay, Nergiz
dc.language.iso en en_US
dc.publisher Assoc Computing Machinery en_US
dc.relation.ispartof 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB) -- OCT 02-05, 2016 -- Seattle, WA en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Data Mining en_US
dc.subject Support Vector Machine en_US
dc.subject Naive Bayes en_US
dc.subject Multi Perceptron en_US
dc.subject Classifier en_US
dc.subject Neuroocology en_US
dc.title ANALYSIS OF NEUROONCOLOGICAL DATA TO PREDICT SUCCESS OF OPERATION THROUGH CLASSIFICATION en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication c4d3c46b-870a-408e-b51c-61fa7c2627e1
relation.isAuthorOfPublication c99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isAuthorOfPublication.latestForDiscovery c4d3c46b-870a-408e-b51c-61fa7c2627e1
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections