ANALYSIS OF NEUROONCOLOGICAL DATA TO PREDICT SUCCESS OF OPERATION THROUGH CLASSIFICATION

dc.authoridCagiltay, Nergiz/0000-0003-0875-9276
dc.authoridBörcek, Alp Özgün/0000-0002-6222-382X
dc.authoridMaras, Hadi Hakan/0000-0001-5117-3938
dc.authorscopusid57192990689
dc.authorscopusid8895480900
dc.authorscopusid24333488200
dc.authorscopusid16237826800
dc.authorscopusid56875440000
dc.authorwosidCagiltay, Nergiz/O-3082-2019
dc.authorwosidBörcek, Alp Özgün/O-6840-2017
dc.authorwosidMaras, Hadi Hakan/G-1236-2017
dc.contributor.authorBagherzadi, Negin
dc.contributor.authorBorcek, Alp Ozgun
dc.contributor.authorTokdemir, Gul
dc.contributor.authorCagiltay, Nergiz
dc.contributor.authorMaras, H. Hakan
dc.contributor.otherComputer Engineering
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T14:32:24Z
dc.date.available2024-07-05T14:32:24Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Bagherzadi, Negin] Middle East Tech Univ, Dept Neurosci & Neurotechnol, Ankara, Turkey; [Borcek, Alp Ozgun] Gazi Univ, Fac Med, Dept Neurosurg, Ankara, Turkey; [Tokdemir, Gul; Maras, H. Hakan] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Cagiltay, Nergiz] Atilim Univ, Software Engn Dept, Ankara, Turkeyen_US
dc.descriptionCagiltay, Nergiz/0000-0003-0875-9276; Börcek, Alp Özgün/0000-0002-6222-382X; Maras, Hadi Hakan/0000-0001-5117-3938en_US
dc.description.abstractData mining algorithms have been applied in various fields of medicine to get insights about diagnosis and treatment of certain diseases. This gives rise to more research on personalized medicine as patient data can be utilized to predict outcomes of certain treatment procedures. Accordingly, this study aims to create a model to provide decision support for surgeons in Neurooncology surgery. For this purpose, we have analyzed clinical pathology records of Neurooncology patients through various classification algorithms, namely Support Vector Machine, Multi Perceptron and Naive Bayes methods, and compared their performances with the aim of predicting surgery complication. A large number of factors have been considered to classify and predict percentage of patient's complication in surgery. Some of the factors found to be predictive were age, sex, clinical presentation, previous surgery type etc. For classification models built up using Support Vector Machine, Naive Bayes and Multi Perceptron, Classification trials for Support Vector Machine have shown %77.47 generalization accuracy, which was established by 5-fold cross-validation.en_US
dc.description.sponsorshipNational Science Association-TUBITAK (CAN project Tubitak 1003) [113S094]; TUBITAK 1003 programen_US
dc.description.sponsorshipThis study is conducted in the frame of CAN-Neuronavigation system Development Project supported by National Science Association-TUBITAK (CAN project Tubitak 1003 support, Project No: 113S094). The authors would like to thank the support of TUBITAK 1003 program for realizing this research.en_US
dc.identifier.citation0
dc.identifier.doi10.1145/2975167.2985645
dc.identifier.endpage486en_US
dc.identifier.isbn9781450342254
dc.identifier.scopus2-s2.0-85009724166
dc.identifier.startpage485en_US
dc.identifier.urihttps://doi.org/10.1145/2975167.2985645
dc.identifier.urihttps://hdl.handle.net/20.500.14411/806
dc.identifier.wosWOS:000433385100061
dc.institutionauthorTokdemir, Gül
dc.institutionauthorÇağıltay, Nergiz
dc.language.isoenen_US
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartof7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB) -- OCT 02-05, 2016 -- Seattle, WAen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData Miningen_US
dc.subjectSupport Vector Machineen_US
dc.subjectNaive Bayesen_US
dc.subjectMulti Perceptronen_US
dc.subjectClassifieren_US
dc.subjectNeuroocologyen_US
dc.titleANALYSIS OF NEUROONCOLOGICAL DATA TO PREDICT SUCCESS OF OPERATION THROUGH CLASSIFICATIONen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc4d3c46b-870a-408e-b51c-61fa7c2627e1
relation.isAuthorOfPublicationc99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isAuthorOfPublication.latestForDiscoveryc4d3c46b-870a-408e-b51c-61fa7c2627e1
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoverye0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections