A Novel Global Robust Stability Criterion for Neural Networks With Delay

dc.contributor.author Singh, V
dc.date.accessioned 2024-07-05T15:10:08Z
dc.date.available 2024-07-05T15:10:08Z
dc.date.issued 2005
dc.description.abstract A criterion based on the intervalised network parameters for the global robust stability of Hopfield-type neural networks with delay is presented. The criterion is compared with an earlier criterion. (c) 2005 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.physleta.2005.02.004
dc.identifier.issn 0375-9601
dc.identifier.issn 1873-2429
dc.identifier.scopus 2-s2.0-15244346634
dc.identifier.uri https://doi.org/10.1016/j.physleta.2005.02.004
dc.identifier.uri https://hdl.handle.net/20.500.14411/1261
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof Physics Letters A
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject dynamical interval neural networks en_US
dc.subject equilibrium analysis en_US
dc.subject global robust stability en_US
dc.subject Hopfield neural networks en_US
dc.subject neural networks en_US
dc.title A Novel Global Robust Stability Criterion for Neural Networks With Delay en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7404651584
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 373 en_US
gdc.description.issue 4-6 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 369 en_US
gdc.description.volume 337 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2005931183
gdc.identifier.wos WOS:000228141100016
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 26.0
gdc.oaire.influence 6.4360455E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Stability theory of functional-differential equations
gdc.oaire.keywords Robust stability
gdc.oaire.keywords Neural networks for/in biological studies, artificial life and related topics
gdc.oaire.keywords equilibrium analysis
gdc.oaire.keywords Hopfield neural networks
gdc.oaire.keywords dynamical interval neural networks
gdc.oaire.keywords neural networks
gdc.oaire.keywords Qualitative investigation and simulation of models involving functional-differential equations
gdc.oaire.keywords Neural nets applied to problems in time-dependent statistical mechanics
gdc.oaire.keywords global robust stability
gdc.oaire.popularity 1.3066432E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 8.22637408
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 39
gdc.plumx.crossrefcites 38
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 47
gdc.scopus.citedcount 47
gdc.virtual.author Sıngh, Vımal
gdc.wos.citedcount 42
relation.isAuthorOfPublication e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isAuthorOfPublication.latestForDiscovery e3234b4c-8993-4550-93fe-38796ff7c7e1
relation.isOrgUnitOfPublication e2a6d0b1-378e-4532-82b1-d17cabc56744
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e2a6d0b1-378e-4532-82b1-d17cabc56744

Files

Collections