Shallow trapping centers in Bi12GeO20 single crystals by thermally stimulated current measurements

dc.authoridDelice, Serdar/0000-0001-5409-6528
dc.authoridGasanly, Nizami/0000-0002-3199-6686
dc.authoridIsik, Mehmet/0000-0003-2119-8266
dc.authorscopusid55751932500
dc.authorscopusid23766993100
dc.authorscopusid35580905900
dc.authorwosidDelice, Serdar/AAU-4793-2020
dc.authorwosidIsik, Mehmet/KMY-5305-2024
dc.authorwosidGasanly, Nizami/HRE-1447-2023
dc.contributor.authorIşık, Mehmet
dc.contributor.authorIsik, M.
dc.contributor.authorGasanly, N. M.
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:24:53Z
dc.date.available2024-07-05T15:24:53Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Delice, S.] Hitit Univ, Dept Phys, TR-19040 Corum, Turkey; [Isik, M.] Atilim Univ, Dept Elect & Elect Engn, TR-06836 Ankara, Turkey; [Gasanly, N. M.] Middle East Tech Univ, Dept Phys, TR-06800 Ankara, Turkey; [Gasanly, N. M.] Baku State Univ, Virtual Int Sci Res Ctr, Baku 1148, Azerbaijanen_US
dc.descriptionDelice, Serdar/0000-0001-5409-6528; Gasanly, Nizami/0000-0002-3199-6686; Isik, Mehmet/0000-0003-2119-8266en_US
dc.description.abstractBi12GeO20 single crystals were investigated by thermally stimulated current (TSC) experiments performed in the temperature range of 10-290 K. Recorded TSC glow curve exhibited six distinctive peaks with maxima at around 90, 105, 166, 209, 246, 275 K. The analyses of the obtained glow curve were accomplished by curve fitting and initial rise methods. The analysis results were in good agreement that the TSC peaks appeared in the glow curve due to existence of trapping levels with activation energies of 0.10, 0.18, 0.23, 0.53, 0.68 and 0.73 eV. These trapping levels were estimated to be hole traps above valence band. The heating rate dependent TSC glow curves were also obtained for various rates between 0.30 and 0.45 K/s. The changes of TSC intensity, peak maximum temperature and full-widths-half-maximum values with heating rates were studied in detail. TSC intensity decreased and peak maximum temperature increased with increasing heating rate. Determination of defects and trapping/stimulation mechanism of those are significant for technological applications since local states in these materials take critical role for device performance.en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.mtcomm.2022.104556
dc.identifier.issn2352-4928
dc.identifier.scopus2-s2.0-85138798393
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2022.104556
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2464
dc.identifier.volume33en_US
dc.identifier.wosWOS:000876432700003
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSillenitesen_US
dc.subjectDefectsen_US
dc.subjectTSCen_US
dc.subjectBi12GeO20en_US
dc.titleShallow trapping centers in Bi12GeO20 single crystals by thermally stimulated current measurementsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication0493a5b0-644f-4893-9f39-87538d8d6709
relation.isAuthorOfPublication.latestForDiscovery0493a5b0-644f-4893-9f39-87538d8d6709
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections