On the Independence of Statistical Randomness Tests Included in the Nist Test Suite

dc.authorscopusid 36624418400
dc.authorscopusid 57193885672
dc.authorscopusid 36165068500
dc.authorscopusid 19933556500
dc.authorwosid Koçak, Onur/AAF-5065-2019
dc.contributor.author Sulak, Fatih
dc.contributor.author Uguz, Muhiddin
dc.contributor.author Kocak, Onur
dc.contributor.author Doganaksoy, Ali
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T14:30:46Z
dc.date.available 2024-07-05T14:30:46Z
dc.date.issued 2017
dc.department Atılım University en_US
dc.department-temp [Sulak, Fatih] Atilim Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Uguz, Muhiddin; Doganaksoy, Ali] Middle East Tech Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Kocak, Onur] TUBITAK Natl Res Inst Elect & Cryptol UEKAE, Gebze, Turkey; [Kocak, Onur] Middle East Tech Univ, Inst Appl Math, Dept Cryptog, Ankara, Turkey en_US
dc.description.abstract Random numbers and random sequences are used to produce vital parts of cryptographic algorithms such as encryption keys and therefore the generation and evaluation of random sequences in terms of randomness are vital. Test suites consisting of a number of statistical randomness tests are used to detect the nonrandom characteristics of the sequences. Construction of a test suite is not an easy task. On one hand, the coverage of a suite should be wide; that is, it should compare the sequence under consideration from many different points of view with true random sequences. On the other hand, an overpopulated suite is expensive in terms of running time and computing power. Unfortunately, this trade-off is not addressed in detail in most of the suites in use. An efficient suite should avoid use of similar tests, while still containing sufficiently many. A single statistical test gives a measure for the randomness of the data. A collection of tests in a suite give a collection of measures. Obtaining a single value from this collection of measures is a difficult task and so far there is no conventional or strongly recommended method for this purpose. This work focuses on the evaluation of the randomness of data to give a unified result that considers all statistical information obtained from different tests in the suite. A natural starting point of research in this direction is to investigate correlations between test results and to study the independences of each from others. It is started with the concept of independence. As it is complicated enough to work even with one test function, theoretical investigation of dependence between many of them in terms of conditional probabilities is a much more difficult task. With this motivation, in this work it is tried to get some experimental results that may lead to theoretical results in future works. As experimental results may reflect properties of the data set under consideration, work is done on various types of large data sets hoping to get results that give clues about the theoretical results. For a collection of statistical randomness tests, the tests in the NIST test suite are considered. Tests in the NIST suite that can be applied to sequences shorter than 38,912 bits are analyzed. Based on the correlation of the tests at extreme values, the dependencies of the tests are found. Depending on the coverage of a test suite, a new concept, the coverage efficiency of a test suite, is defined, and using this concept, the most efficient, the least efficient, and the optimal subsuites of the NIST suite are determined. Moreover, the marginal benefit of each test, which also helps one to understand the contribution of each individual test to the coverage efficiency of the NIST suite, is found. Furthermore, an efficient subsuite that contains five statistical randomness tests is proposed. en_US
dc.identifier.citationcount 26
dc.identifier.doi 10.3906/elk-1605-212
dc.identifier.endpage 3683 en_US
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85053841091
dc.identifier.scopusquality Q3
dc.identifier.startpage 3673 en_US
dc.identifier.uri https://doi.org/10.3906/elk-1605-212
dc.identifier.uri https://hdl.handle.net/20.500.14411/611
dc.identifier.volume 25 en_US
dc.identifier.wos WOS:000412571400015
dc.identifier.wosquality Q4
dc.institutionauthor Sulak, Fatih
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 25
dc.subject Cryptography en_US
dc.subject random sequences en_US
dc.subject statistical randomness tests en_US
dc.subject NIST test suite en_US
dc.subject coverage en_US
dc.subject independence en_US
dc.subject correlation en_US
dc.title On the Independence of Statistical Randomness Tests Included in the Nist Test Suite en_US
dc.type Article en_US
dc.wos.citedbyCount 25
dspace.entity.type Publication
relation.isAuthorOfPublication 40b5c43b-abb5-47ad-9931-a3dcff0a8fe5
relation.isAuthorOfPublication.latestForDiscovery 40b5c43b-abb5-47ad-9931-a3dcff0a8fe5
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections