Impact of Green Wall and Roof Applications on Energy Consumption and Thermal Comfort for Climate Resilient Buildings
dc.authorid | Ozbey, Mehmet Furkan/0000-0002-5813-3514 | |
dc.authorscopusid | 56011415300 | |
dc.authorscopusid | 57170667600 | |
dc.authorscopusid | 59754578300 | |
dc.authorscopusid | 57219871456 | |
dc.authorscopusid | 56010236400 | |
dc.authorwosid | Turhan, Cihan/Abd-1880-2021 | |
dc.authorwosid | Chen Austin, Miguel/Abc-6348-2020 | |
dc.authorwosid | Ozbey, Mehmet Furkan/Glu-8252-2022 | |
dc.contributor.author | Turhan, Cihan | |
dc.contributor.author | Carpino, Cristina | |
dc.contributor.author | Austin, Miguel Chen | |
dc.contributor.author | Ozbey, Mehmet Furkan | |
dc.contributor.author | Akkurt, Gulden Gokcen | |
dc.date.accessioned | 2025-06-05T21:18:27Z | |
dc.date.available | 2025-06-05T21:18:27Z | |
dc.date.issued | 2025 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Turhan, Cihan] Atilim Univ, Dept Energy Syst Engn, TR-06830 Ankara, Turkiye; [Carpino, Cristina] Univ Calabria, Dept Mech Energy & Management Engn, I-87036 Arcavacata Di Rende, Cosenza, Italy; [Austin, Miguel Chen] Univ Tecnol Panama, Fac Mech Engn, Panama City 081907289, Panama; [Ozbey, Mehmet Furkan] Atilim Univ, Grad Sch Nat & Appl Sci, Dept Mech Engn, TR-06830 Ankara, Turkiye; [Akkurt, Gulden Gokcen] Izmir Inst Technol, Dept Energy Syst Engn, TR-35430 Izmir, Turkiye | en_US |
dc.description | Ozbey, Mehmet Furkan/0000-0002-5813-3514 | en_US |
dc.description.abstract | Nowadays, reducing energy consumption and obtaining thermal comfort are significant for making educational buildings more climate resilient, more sustainable, and more comfortable. To achieve these goals, a sustainable passive method is that of applying green walls and roofs that provide extra thermal insulation, evaporative cooling, a shadowing effect, and the blockage of wind on buildings. Therefore, the objective of this study is to evaluate the impact of green wall and roof applications on energy consumption and thermal comfort in an educational building. For this purpose, a university building in the Csb climate zone is selected and monitored during one year, as a case study. Then, the case building is modelled in a well-calibrated dynamic building energy simulation tool and twenty-one different plant species, which are mostly used for green walls and roofs, are applied to the envelope of the building in order to determine a reduction in energy consumption and an increase in thermal comfort. The Hedera canariensis gomera (an ivy species) plant is used for green walls due to its aesthetic appeal, versatility, and functional benefits while twenty-one different plants including Ophiopogon japonicus (Mando-Grass), Phyllanthus bourgeoisii (Waterfall Plant), and Phoenix roebelenii (Phoenix Palm) are simulated for the green roof applications. The results show that deploying Hedera canariensis gomera to the walls and Phyllanthus bourgeoisii to the roof could simultaneously reduce the energy consumption by 9.31% and increase thermal comfort by 23.55% in the case building. The authors acknowledge that this study is solely based on simulations due to the high cost of all scenarios, and there are inherent differences between simulated and real-world conditions. Therefore, the future work will be analysing scenarios in real life. Considering the limited studies on the effect of different plant species on energy performance and comfort, this study also contributes to sustainable building design strategies. | en_US |
dc.description.sponsorship | Atilim University-Undergraduate Research Projects [ATU-LAP-2021-11] | en_US |
dc.description.sponsorship | This study is funded by Atilim University-Undergraduate Research Projects with a grant number of ATU-LAP-2021-11. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.3390/urbansci9040105 | |
dc.identifier.issn | 2413-8851 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-105003578724 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/urbansci9040105 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/10589 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:001475438400001 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | Green Systems | en_US |
dc.subject | Green Roof | en_US |
dc.subject | Green Wall | en_US |
dc.subject | Educational Buildings | en_US |
dc.subject | Energy Consumption | en_US |
dc.subject | Thermal Comfort | en_US |
dc.title | Impact of Green Wall and Roof Applications on Energy Consumption and Thermal Comfort for Climate Resilient Buildings | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 0 | |
dspace.entity.type | Publication |