Reliability Analysis of Multi-State System With Three-State Components and Its Application To Wind Energy

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

In most real life situations, the system's components contribute differently in different performance levels. Such a situation can be modeled by systems with multi-state components having more than one working status, e.g. perfect functioning, and partial working. In this paper, a multi-state system that consists of two types of three-state components is defined and studied. An explicit formula for the probability that the performance of the system is at least a given level is obtained for the most general case when the components are statistically dependent. The model is applied to evaluate the wind power system that consists of two wind plants in different regions. An optimization problem is formulated to find the optimal number of wind turbines that must be installed in the wind plants by minimizing the total cost under specific power production. (C) 2017 Elsevier Ltd. All rights reserved.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Multi-state systems, Weighted components, Wind speed, Wind power modeling

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

172

Issue

Start Page

58

End Page

63

Collections