Utilizing Hyperspectral Remote Sensing Imagery for Afforestation Planning of Partially Covered Areas

dc.authorid Omruuzun, Fatih/0000-0001-8164-8586
dc.authorid Daglayan, Hazan/0009-0006-4843-6913
dc.authorscopusid 55860593100
dc.authorscopusid 57188553866
dc.authorscopusid 56943462500
dc.authorscopusid 14519028500
dc.authorwosid Omruuzun, Fatih/KMY-8310-2024
dc.authorwosid Daglayan, Hazan/AAC-7736-2020
dc.contributor.author Omruuzun, Fatih
dc.contributor.author Baskurt, Didem Ozisik
dc.contributor.author Daglayan, Hazan
dc.contributor.author Cetin, Yasemin Yardimci
dc.contributor.other Computer Engineering
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T14:32:11Z
dc.date.available 2024-07-05T14:32:11Z
dc.date.issued 2015
dc.department Atılım University en_US
dc.department-temp [Omruuzun, Fatih; Baskurt, Didem Ozisik; Cetin, Yasemin Yardimci] Middle E Tech Univ, Grad Sch Informat, TR-06531 Ankara, Turkey; [Daglayan, Hazan] Atilim Univ, Dept Comp Engn, Ankara, Turkey en_US
dc.description Omruuzun, Fatih/0000-0001-8164-8586; Daglayan, Hazan/0009-0006-4843-6913 en_US
dc.description.abstract In this study, a supportive method for afforestation planning process of partially forested areas using hyperspectral remote sensing imagery has been proposed. The algorithm has been tested on a scene covering METU campus area that is acquired by high resolution hyperspectral push-broom sensor operating in visible and NIR range of the electromagnetic spectrum. The main contribution of this study to the literature is segmentation of partially forested regions with a semi-supervised classification of specific tree species based on chlorophyll content quantified in hyperspectral scenes. In addition, the proposed method makes use of various hyperspectral image processing algorithms to improve identification accuracy of image regions to be planted. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1117/12.2196532
dc.identifier.isbn 9781628418538
dc.identifier.issn 0277-786X
dc.identifier.issn 1996-756X
dc.identifier.scopus 2-s2.0-84961603783
dc.identifier.scopusquality Q4
dc.identifier.uri https://doi.org/10.1117/12.2196532
dc.identifier.uri https://hdl.handle.net/20.500.14411/748
dc.identifier.volume 9643 en_US
dc.identifier.wos WOS:000367469500076
dc.institutionauthor Başkurt, Nur Didem
dc.institutionauthor Sevim, Hazan Dağlayan
dc.language.iso en en_US
dc.publisher Spie-int Soc Optical Engineering en_US
dc.relation.ispartof Conference on Image and Signal Processing for Remote Sensing XXI -- SEP 21-23, 2015 -- Toulouse, FRANCE en_US
dc.relation.ispartofseries Proceedings of SPIE
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject hyperspectral imaging en_US
dc.subject afforestation planning en_US
dc.subject hyperspectral unmixing en_US
dc.subject anomaly detection en_US
dc.title Utilizing Hyperspectral Remote Sensing Imagery for Afforestation Planning of Partially Covered Areas en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 4da359db-c3ad-4d13-b65c-92b19562ce21
relation.isAuthorOfPublication 39aa7b5e-0cca-4ba6-ae3e-18bcc5a8c2cb
relation.isAuthorOfPublication.latestForDiscovery 4da359db-c3ad-4d13-b65c-92b19562ce21
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections