Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey

dc.authoridAskan, Aysegul/0000-0003-4827-9058
dc.authorscopusid36015912400
dc.authorscopusid35809826800
dc.authorwosidAskan, Aysegul/AAZ-9911-2020
dc.contributor.authorYerlikaya-Ozkurt, Fatma
dc.contributor.authorAskan, Aysegul
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:38:16Z
dc.date.available2024-07-05T15:38:16Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkey; [Askan, Aysegul] Middle East Tech Univ, Dept Civil Engn, TR-06800 Ankara, Turkeyen_US
dc.descriptionAskan, Aysegul/0000-0003-4827-9058en_US
dc.description.abstractSeismic damage estimation is an important key ingredient of seismic loss modeling, risk mitigation and disaster management. It is a problem involving inherent uncertainties and complexities. Thus, it is important to employ robust approaches which will handle the problem accurately. In this study, classification and regression tree approach is applied on damage data sets collected from reinforced concrete frame buildings after major previous earthquakes in Turkey. Four damage states ranging from None to Severe are used, while five structural parameters are employed as damage identifiers. For validation, results of classification analyses are compared against observed damage states. Results in terms of well-known classification performance measures indicate that when the size of the database is larger, the correct classification rates are higher. Performance measures computed for Test data set indicate similar success to that of Train data set. The approach is found to be effective in classifying randomly selected damage data.en_US
dc.identifier.citation5
dc.identifier.doi10.1007/s11069-020-04125-2
dc.identifier.endpage3180en_US
dc.identifier.issn0921-030X
dc.identifier.issn1573-0840
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85087426492
dc.identifier.scopusqualityQ1
dc.identifier.startpage3163en_US
dc.identifier.urihttps://doi.org/10.1007/s11069-020-04125-2
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3086
dc.identifier.volume103en_US
dc.identifier.wosWOS:000544541000003
dc.identifier.wosqualityQ2
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEarthquakesen_US
dc.subjectSeismic damageen_US
dc.subjectClassification and regression treeen_US
dc.subjectDamage predictionen_US
dc.titlePrediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkeyen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections