Prediction of Potential Seismic Damage Using Classification and Regression Trees: a Case Study on Earthquake Damage Databases From Turkey

dc.contributor.author Yerlikaya-Ozkurt, Fatma
dc.contributor.author Askan, Aysegul
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:38:16Z
dc.date.available 2024-07-05T15:38:16Z
dc.date.issued 2020
dc.description Askan, Aysegul/0000-0003-4827-9058 en_US
dc.description.abstract Seismic damage estimation is an important key ingredient of seismic loss modeling, risk mitigation and disaster management. It is a problem involving inherent uncertainties and complexities. Thus, it is important to employ robust approaches which will handle the problem accurately. In this study, classification and regression tree approach is applied on damage data sets collected from reinforced concrete frame buildings after major previous earthquakes in Turkey. Four damage states ranging from None to Severe are used, while five structural parameters are employed as damage identifiers. For validation, results of classification analyses are compared against observed damage states. Results in terms of well-known classification performance measures indicate that when the size of the database is larger, the correct classification rates are higher. Performance measures computed for Test data set indicate similar success to that of Train data set. The approach is found to be effective in classifying randomly selected damage data. en_US
dc.identifier.doi 10.1007/s11069-020-04125-2
dc.identifier.issn 0921-030X
dc.identifier.issn 1573-0840
dc.identifier.scopus 2-s2.0-85087426492
dc.identifier.uri https://doi.org/10.1007/s11069-020-04125-2
dc.identifier.uri https://hdl.handle.net/20.500.14411/3086
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Natural Hazards
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Earthquakes en_US
dc.subject Seismic damage en_US
dc.subject Classification and regression tree en_US
dc.subject Damage prediction en_US
dc.title Prediction of Potential Seismic Damage Using Classification and Regression Trees: a Case Study on Earthquake Damage Databases From Turkey en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Askan, Aysegul/0000-0003-4827-9058
gdc.author.institutional Yerlikaya Özkurt, Fatma
gdc.author.scopusid 36015912400
gdc.author.scopusid 35809826800
gdc.author.wosid Askan, Aysegul/AAZ-9911-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkey; [Askan, Aysegul] Middle East Tech Univ, Dept Civil Engn, TR-06800 Ankara, Turkey en_US
gdc.description.endpage 3180 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 3163 en_US
gdc.description.volume 103 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3039132767
gdc.identifier.wos WOS:000544541000003
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.8955924E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.0524884E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.66357739
gdc.openalex.normalizedpercentile 0.68
gdc.opencitations.count 6
gdc.plumx.mendeley 21
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 9
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections