Prediction of Potential Seismic Damage Using Classification and Regression Trees: a Case Study on Earthquake Damage Databases From Turkey

dc.authorid Askan, Aysegul/0000-0003-4827-9058
dc.authorscopusid 36015912400
dc.authorscopusid 35809826800
dc.authorwosid Askan, Aysegul/AAZ-9911-2020
dc.contributor.author Yerlikaya-Ozkurt, Fatma
dc.contributor.author Askan, Aysegul
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:38:16Z
dc.date.available 2024-07-05T15:38:16Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkey; [Askan, Aysegul] Middle East Tech Univ, Dept Civil Engn, TR-06800 Ankara, Turkey en_US
dc.description Askan, Aysegul/0000-0003-4827-9058 en_US
dc.description.abstract Seismic damage estimation is an important key ingredient of seismic loss modeling, risk mitigation and disaster management. It is a problem involving inherent uncertainties and complexities. Thus, it is important to employ robust approaches which will handle the problem accurately. In this study, classification and regression tree approach is applied on damage data sets collected from reinforced concrete frame buildings after major previous earthquakes in Turkey. Four damage states ranging from None to Severe are used, while five structural parameters are employed as damage identifiers. For validation, results of classification analyses are compared against observed damage states. Results in terms of well-known classification performance measures indicate that when the size of the database is larger, the correct classification rates are higher. Performance measures computed for Test data set indicate similar success to that of Train data set. The approach is found to be effective in classifying randomly selected damage data. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1007/s11069-020-04125-2
dc.identifier.endpage 3180 en_US
dc.identifier.issn 0921-030X
dc.identifier.issn 1573-0840
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85087426492
dc.identifier.scopusquality Q1
dc.identifier.startpage 3163 en_US
dc.identifier.uri https://doi.org/10.1007/s11069-020-04125-2
dc.identifier.uri https://hdl.handle.net/20.500.14411/3086
dc.identifier.volume 103 en_US
dc.identifier.wos WOS:000544541000003
dc.identifier.wosquality Q2
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 8
dc.subject Earthquakes en_US
dc.subject Seismic damage en_US
dc.subject Classification and regression tree en_US
dc.subject Damage prediction en_US
dc.title Prediction of Potential Seismic Damage Using Classification and Regression Trees: a Case Study on Earthquake Damage Databases From Turkey en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections