Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey
dc.authorid | Askan, Aysegul/0000-0003-4827-9058 | |
dc.authorscopusid | 36015912400 | |
dc.authorscopusid | 35809826800 | |
dc.authorwosid | Askan, Aysegul/AAZ-9911-2020 | |
dc.contributor.author | Yerlikaya-Ozkurt, Fatma | |
dc.contributor.author | Askan, Aysegul | |
dc.contributor.other | Industrial Engineering | |
dc.date.accessioned | 2024-07-05T15:38:16Z | |
dc.date.available | 2024-07-05T15:38:16Z | |
dc.date.issued | 2020 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, TR-06830 Ankara, Turkey; [Askan, Aysegul] Middle East Tech Univ, Dept Civil Engn, TR-06800 Ankara, Turkey | en_US |
dc.description | Askan, Aysegul/0000-0003-4827-9058 | en_US |
dc.description.abstract | Seismic damage estimation is an important key ingredient of seismic loss modeling, risk mitigation and disaster management. It is a problem involving inherent uncertainties and complexities. Thus, it is important to employ robust approaches which will handle the problem accurately. In this study, classification and regression tree approach is applied on damage data sets collected from reinforced concrete frame buildings after major previous earthquakes in Turkey. Four damage states ranging from None to Severe are used, while five structural parameters are employed as damage identifiers. For validation, results of classification analyses are compared against observed damage states. Results in terms of well-known classification performance measures indicate that when the size of the database is larger, the correct classification rates are higher. Performance measures computed for Test data set indicate similar success to that of Train data set. The approach is found to be effective in classifying randomly selected damage data. | en_US |
dc.identifier.citation | 5 | |
dc.identifier.doi | 10.1007/s11069-020-04125-2 | |
dc.identifier.endpage | 3180 | en_US |
dc.identifier.issn | 0921-030X | |
dc.identifier.issn | 1573-0840 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85087426492 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 3163 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11069-020-04125-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/3086 | |
dc.identifier.volume | 103 | en_US |
dc.identifier.wos | WOS:000544541000003 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Yerlikaya Özkurt, Fatma | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Earthquakes | en_US |
dc.subject | Seismic damage | en_US |
dc.subject | Classification and regression tree | en_US |
dc.subject | Damage prediction | en_US |
dc.title | Prediction of potential seismic damage using classification and regression trees: a case study on earthquake damage databases from Turkey | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
relation.isAuthorOfPublication.latestForDiscovery | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication.latestForDiscovery | 12c9377e-b7fe-4600-8326-f3613a05653d |