Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms

dc.contributor.author Yilmaz, Vadi Su
dc.contributor.author Yılmaz, Vadi Su
dc.contributor.author Eseller, Kemal Efe
dc.contributor.author Aslan, Ozgur
dc.contributor.author Aslan, Özgür
dc.contributor.author Bayraktar, Emin
dc.contributor.author Eseller, Kemal Efe
dc.contributor.author Yılmaz, Vadi Su
dc.contributor.author Aslan, Özgür
dc.contributor.author Eseller, Kemal Efe
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other Mechanical Engineering
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other Mechanical Engineering
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other Mechanical Engineering
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:25:09Z
dc.date.available 2024-07-05T15:25:09Z
dc.date.issued 2023
dc.description aslan, ozgur/0000-0002-1042-0805 en_US
dc.description.abstract This paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined. en_US
dc.identifier.doi 10.3390/inventions8020054
dc.identifier.issn 2411-5134
dc.identifier.scopus 2-s2.0-85153715175
dc.identifier.uri https://doi.org/10.3390/inventions8020054
dc.identifier.uri https://hdl.handle.net/20.500.14411/2513
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Inventions
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject LIBS en_US
dc.subject rubber-polymers en_US
dc.subject hardness en_US
dc.subject machine learning en_US
dc.subject classification en_US
dc.title Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id aslan, ozgur/0000-0002-1042-0805
gdc.author.institutional Yılmaz, Vadi Su
gdc.author.institutional Aslan, Özgür
gdc.author.institutional Eseller, Kemal Efe
gdc.author.scopusid 57201855036
gdc.author.scopusid 22950638800
gdc.author.scopusid 25521345500
gdc.author.scopusid 12142980800
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Yilmaz, Vadi Su; Eseller, Kemal Efe] Atilim Univ, Dept Elect Elect Engn, TR-06830 Ankara, Turkiye; [Eseller, Kemal Efe] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA; [Aslan, Ozgur] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkiye; [Bayraktar, Emin] ISAE Supmeca Paris, Sch Mech & Mfg Engn, F-93407 Paris, France en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 54
gdc.description.volume 8 en_US
gdc.identifier.openalex W4323662764
gdc.identifier.wos WOS:000978185800001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.583162E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Technological innovations. Automation
gdc.oaire.keywords Engineering machinery, tools, and implements
gdc.oaire.keywords machine learning
gdc.oaire.keywords LIBS
gdc.oaire.keywords classification
gdc.oaire.keywords [SPI] Engineering Sciences [physics]
gdc.oaire.keywords HD45-45.2
gdc.oaire.keywords rubber-polymers
gdc.oaire.keywords Recycled Rubber- Polymers
gdc.oaire.keywords TA213-215
gdc.oaire.keywords LIBS; rubber-polymers; hardness; machine learning; classification
gdc.oaire.keywords hardness
gdc.oaire.popularity 2.2423825E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication bafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication 8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication 5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublication bafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication 8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication 5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublication bafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication 8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication 5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublication.latestForDiscovery bafca312-fb0f-495b-b33d-53b66835980a
relation.isOrgUnitOfPublication 032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication d2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections