Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms
| dc.contributor.author | Yilmaz, Vadi Su | |
| dc.contributor.author | Yılmaz, Vadi Su | |
| dc.contributor.author | Eseller, Kemal Efe | |
| dc.contributor.author | Aslan, Ozgur | |
| dc.contributor.author | Aslan, Özgür | |
| dc.contributor.author | Bayraktar, Emin | |
| dc.contributor.author | Eseller, Kemal Efe | |
| dc.contributor.author | Yılmaz, Vadi Su | |
| dc.contributor.author | Aslan, Özgür | |
| dc.contributor.author | Eseller, Kemal Efe | |
| dc.contributor.other | Electrical-Electronics Engineering | |
| dc.contributor.other | Mechanical Engineering | |
| dc.contributor.other | Department of Electrical & Electronics Engineering | |
| dc.contributor.other | Department of Electrical & Electronics Engineering | |
| dc.contributor.other | Mechanical Engineering | |
| dc.contributor.other | Electrical-Electronics Engineering | |
| dc.contributor.other | Mechanical Engineering | |
| dc.contributor.other | Department of Electrical & Electronics Engineering | |
| dc.contributor.other | 15. Graduate School of Natural and Applied Sciences | |
| dc.contributor.other | 06. School Of Engineering | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:25:09Z | |
| dc.date.available | 2024-07-05T15:25:09Z | |
| dc.date.issued | 2023 | |
| dc.description | aslan, ozgur/0000-0002-1042-0805 | en_US |
| dc.description.abstract | This paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined. | en_US |
| dc.identifier.doi | 10.3390/inventions8020054 | |
| dc.identifier.issn | 2411-5134 | |
| dc.identifier.scopus | 2-s2.0-85153715175 | |
| dc.identifier.uri | https://doi.org/10.3390/inventions8020054 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/2513 | |
| dc.language.iso | en | en_US |
| dc.publisher | Mdpi | en_US |
| dc.relation.ispartof | Inventions | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | LIBS | en_US |
| dc.subject | rubber-polymers | en_US |
| dc.subject | hardness | en_US |
| dc.subject | machine learning | en_US |
| dc.subject | classification | en_US |
| dc.title | Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | aslan, ozgur/0000-0002-1042-0805 | |
| gdc.author.institutional | Yılmaz, Vadi Su | |
| gdc.author.institutional | Aslan, Özgür | |
| gdc.author.institutional | Eseller, Kemal Efe | |
| gdc.author.scopusid | 57201855036 | |
| gdc.author.scopusid | 22950638800 | |
| gdc.author.scopusid | 25521345500 | |
| gdc.author.scopusid | 12142980800 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Yilmaz, Vadi Su; Eseller, Kemal Efe] Atilim Univ, Dept Elect Elect Engn, TR-06830 Ankara, Turkiye; [Eseller, Kemal Efe] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA; [Aslan, Ozgur] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkiye; [Bayraktar, Emin] ISAE Supmeca Paris, Sch Mech & Mfg Engn, F-93407 Paris, France | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 54 | |
| gdc.description.volume | 8 | en_US |
| gdc.identifier.openalex | W4323662764 | |
| gdc.identifier.wos | WOS:000978185800001 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.583162E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Technological innovations. Automation | |
| gdc.oaire.keywords | Engineering machinery, tools, and implements | |
| gdc.oaire.keywords | machine learning | |
| gdc.oaire.keywords | LIBS | |
| gdc.oaire.keywords | classification | |
| gdc.oaire.keywords | [SPI] Engineering Sciences [physics] | |
| gdc.oaire.keywords | HD45-45.2 | |
| gdc.oaire.keywords | rubber-polymers | |
| gdc.oaire.keywords | Recycled Rubber- Polymers | |
| gdc.oaire.keywords | TA213-215 | |
| gdc.oaire.keywords | LIBS; rubber-polymers; hardness; machine learning; classification | |
| gdc.oaire.keywords | hardness | |
| gdc.oaire.popularity | 2.2423825E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.0 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | bafca312-fb0f-495b-b33d-53b66835980a | |
| relation.isAuthorOfPublication | 8e955d4b-b0a3-463e-ae19-1ac6791507a5 | |
| relation.isAuthorOfPublication | 5bd2cd8d-d6e0-4c90-a081-c192da36e782 | |
| relation.isAuthorOfPublication | bafca312-fb0f-495b-b33d-53b66835980a | |
| relation.isAuthorOfPublication | 8e955d4b-b0a3-463e-ae19-1ac6791507a5 | |
| relation.isAuthorOfPublication | 5bd2cd8d-d6e0-4c90-a081-c192da36e782 | |
| relation.isAuthorOfPublication | bafca312-fb0f-495b-b33d-53b66835980a | |
| relation.isAuthorOfPublication | 8e955d4b-b0a3-463e-ae19-1ac6791507a5 | |
| relation.isAuthorOfPublication | 5bd2cd8d-d6e0-4c90-a081-c192da36e782 | |
| relation.isAuthorOfPublication.latestForDiscovery | bafca312-fb0f-495b-b33d-53b66835980a | |
| relation.isOrgUnitOfPublication | 032f8aca-54a7-476c-b399-6f26feb20a7d | |
| relation.isOrgUnitOfPublication | d2cd5950-09a4-4d1d-976e-01f8f7ee4808 | |
| relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
| relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
| relation.isOrgUnitOfPublication | dff2e5a6-d02d-4bef-8b9e-efebe3919b10 | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 032f8aca-54a7-476c-b399-6f26feb20a7d |