Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms

dc.authoridaslan, ozgur/0000-0002-1042-0805
dc.authorscopusid57201855036
dc.authorscopusid22950638800
dc.authorscopusid25521345500
dc.authorscopusid12142980800
dc.contributor.authorYilmaz, Vadi Su
dc.contributor.authorYılmaz, Vadi Su
dc.contributor.authorEseller, Kemal Efe
dc.contributor.authorAslan, Ozgur
dc.contributor.authorAslan, Özgür
dc.contributor.authorBayraktar, Emin
dc.contributor.authorEseller, Kemal Efe
dc.contributor.authorYılmaz, Vadi Su
dc.contributor.authorAslan, Özgür
dc.contributor.authorEseller, Kemal Efe
dc.contributor.otherElectrical-Electronics Engineering
dc.contributor.otherMechanical Engineering
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.contributor.otherMechanical Engineering
dc.contributor.otherElectrical-Electronics Engineering
dc.contributor.otherMechanical Engineering
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:25:09Z
dc.date.available2024-07-05T15:25:09Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Yilmaz, Vadi Su; Eseller, Kemal Efe] Atilim Univ, Dept Elect Elect Engn, TR-06830 Ankara, Turkiye; [Eseller, Kemal Efe] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA; [Aslan, Ozgur] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkiye; [Bayraktar, Emin] ISAE Supmeca Paris, Sch Mech & Mfg Engn, F-93407 Paris, Franceen_US
dc.descriptionaslan, ozgur/0000-0002-1042-0805en_US
dc.description.abstractThis paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined.en_US
dc.identifier.citationcount0
dc.identifier.doi10.3390/inventions8020054
dc.identifier.issn2411-5134
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85153715175
dc.identifier.urihttps://doi.org/10.3390/inventions8020054
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2513
dc.identifier.volume8en_US
dc.identifier.wosWOS:000978185800001
dc.institutionauthorYılmaz, Vadi Su
dc.institutionauthorAslan, Özgür
dc.institutionauthorEseller, Kemal Efe
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLIBSen_US
dc.subjectrubber-polymersen_US
dc.subjecthardnessen_US
dc.subjectmachine learningen_US
dc.subjectclassificationen_US
dc.titleClassification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublicationbafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublicationbafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublication.latestForDiscoverybafca312-fb0f-495b-b33d-53b66835980a
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublicationd2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections