Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithms

dc.authoridaslan, ozgur/0000-0002-1042-0805
dc.authorscopusid57201855036
dc.authorscopusid22950638800
dc.authorscopusid25521345500
dc.authorscopusid12142980800
dc.contributor.authorYilmaz, Vadi Su
dc.contributor.authorEseller, Kemal Efe
dc.contributor.authorAslan, Ozgur
dc.contributor.authorBayraktar, Emin
dc.contributor.otherElectrical-Electronics Engineering
dc.contributor.otherMechanical Engineering
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:25:09Z
dc.date.available2024-07-05T15:25:09Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Yilmaz, Vadi Su; Eseller, Kemal Efe] Atilim Univ, Dept Elect Elect Engn, TR-06830 Ankara, Turkiye; [Eseller, Kemal Efe] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA; [Aslan, Ozgur] Atilim Univ, Dept Mech Engn, TR-06830 Ankara, Turkiye; [Bayraktar, Emin] ISAE Supmeca Paris, Sch Mech & Mfg Engn, F-93407 Paris, Franceen_US
dc.descriptionaslan, ozgur/0000-0002-1042-0805en_US
dc.description.abstractThis paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined.en_US
dc.identifier.citation0
dc.identifier.doi10.3390/inventions8020054
dc.identifier.issn2411-5134
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85153715175
dc.identifier.urihttps://doi.org/10.3390/inventions8020054
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2513
dc.identifier.volume8en_US
dc.identifier.wosWOS:000978185800001
dc.institutionauthorYılmaz, Vadi Su
dc.institutionauthorAslan, Özgür
dc.institutionauthorEseller, Kemal Efe
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLIBSen_US
dc.subjectrubber-polymersen_US
dc.subjecthardnessen_US
dc.subjectmachine learningen_US
dc.subjectclassificationen_US
dc.titleClassification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationbafca312-fb0f-495b-b33d-53b66835980a
relation.isAuthorOfPublication8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication5bd2cd8d-d6e0-4c90-a081-c192da36e782
relation.isAuthorOfPublication.latestForDiscoverybafca312-fb0f-495b-b33d-53b66835980a
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublicationd2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections