Exploring the Thermal Stability of Sb2se3 for Potential Applications Through Advanced Thermal Analysis Methods

dc.authorscopusid 56192995000
dc.authorscopusid 23766993100
dc.authorscopusid 35957498000
dc.authorscopusid 7003589218
dc.authorscopusid 59204263700
dc.contributor.author Altuntas, Gozde
dc.contributor.author Isik, Mehmet
dc.contributor.author Surucu, Gokhan
dc.contributor.author Parlak, Mehmet
dc.contributor.author Surucu, Ozge
dc.date.accessioned 2025-06-05T21:18:41Z
dc.date.available 2025-06-05T21:18:41Z
dc.date.issued 2025
dc.department Atılım University en_US
dc.department-temp [Altuntas, Gozde] Gazi Univ, Fac Technol, Dept Met & Mat Engn, TR-06500 Ankara, Turkiye; [Isik, Mehmet] Izmir Bakircay Univ, Fac Engn & Architecture, Dept Biomed Engn, TR-35665 Izmir, Turkiye; [Isik, Mehmet] Izmir Bakircay Univ, Biomed Technol Design Applicat & Res Ctr, TR-35665 Izmir, Turkiye; [Surucu, Gokhan] Gazi Univ, Fac Technol, Dept Energy Syst Engn, TR-06500 Ankara, Turkiye; [Parlak, Mehmet] Middle East Tech Univ, Dept Phys, TR-06800 Ankara, Turkiye; [Surucu, Ozge] Atilim Univ, Dept Elect & Elect Engn, TR-06836 Ankara, Turkiye en_US
dc.description.abstract Antimony selenide (Sb2Se3) is a promising material for energy applications, including photovoltaics, thermoelectrics, and photodetectors, due to its favorable electronic properties, availability, and low toxicity. However, its thermal stability, crucial for device efficiency and reliability, has been less explored, leaving a gap in understanding its high-temperature suitability. This study evaluates the thermal stability of Sb2Se3 using thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The results show that Sb2Se3 remains stable up to 500 degrees C, with two significant weight loss stages: 1.75% between 500 and 610 degrees C, and 3.50% between 610 and 775 degrees C, indicating decomposition processes. Activation energies for the decomposition phases were determined as 121.8 and 57.2 kJ/mol using the Coats-Redfern method. Additionally, an endothermic phase transition was observed between 599 and 630.6 degrees C via DSC analysis. These findings demonstrate Sb2Se3's potential for high-temperature energy applications, providing essential insights for optimizing its use in solar cells, thermoelectric devices, and other technologies. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1021/acsomega.4c10053
dc.identifier.issn 2470-1343
dc.identifier.scopus 2-s2.0-105005945568
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1021/acsomega.4c10053
dc.identifier.uri https://hdl.handle.net/20.500.14411/10597
dc.identifier.wos WOS:001494650300001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Amer Chemical Soc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.title Exploring the Thermal Stability of Sb2se3 for Potential Applications Through Advanced Thermal Analysis Methods en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files

Collections