A Novel Use of Reinforcement Learning for Elevated Click-Through Rate in Online Advertising

dc.authoridYILDIZ, Beytullah/0000-0001-7664-5145
dc.authorscopusid59239788800
dc.authorscopusid14632851900
dc.contributor.authorHaider, Umair
dc.contributor.authorYildiz, Beytullah
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-09-10T21:35:49Z
dc.date.available2024-09-10T21:35:49Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Haider, Umair; Yildiz, Beytullah] Atilim Univ, Dept Software Engn, Ankara, Turkiyeen_US
dc.descriptionYILDIZ, Beytullah/0000-0001-7664-5145en_US
dc.description.abstractEfficiently predicting Click-through Rate (CTR) is crucial for the success of online advertising. Traditional methods often struggle to adapt to the dynamic nature of user preferences and the evolving relevance of advertisements. In this study, we propose a novel Reinforcement Learning (RL) approach for CTR prediction, leveraging OpenAI Gym and the Thompson Sampling algorithm. Our approach dynamically estimates CTR, cleverly adapting to the ever-changing landscape of user preferences and advertisement relevance. Results showcase the exceptional performance of Thompson Sampling in CTR prediction, sur-passing other RL methods with a remarkable 10% higher confidence level. This emphasizes the significant potential of our RL approach in optimizing the selection of online advertisements.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi10.1109/CSCI62032.2023.00017
dc.identifier.endpage70en_US
dc.identifier.isbn9798350361513
dc.identifier.isbn9798350372304
dc.identifier.issn2769-5670
dc.identifier.scopus2-s2.0-85199984713
dc.identifier.scopusqualityN/A
dc.identifier.startpage64en_US
dc.identifier.urihttps://doi.org/10.1109/CSCI62032.2023.00017
dc.identifier.wosWOS:001283930300019
dc.identifier.wosqualityN/A
dc.institutionauthorYıldız, Beytullah
dc.language.isoenen_US
dc.publisherIeee Computer Socen_US
dc.relation.ispartofInternational Conference on Computational Science and Computational Intelligence (CSCI) -- DEC 13-15, 2023 -- Las Vegas, NVen_US
dc.relation.ispartofseriesInternational Conference on Computational Science and Computational Intelligence
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReinforcement Learningen_US
dc.subjectOpenAl Gym Environmenten_US
dc.subjectThompson Samplingen_US
dc.subjectClick-through rateen_US
dc.subjectOnline Advertisingen_US
dc.titleA Novel Use of Reinforcement Learning for Elevated Click-Through Rate in Online Advertisingen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections