A Novel Use of Reinforcement Learning for Elevated Click-Through Rate in Online Advertising

dc.authorid YILDIZ, Beytullah/0000-0001-7664-5145
dc.authorscopusid 59239788800
dc.authorscopusid 14632851900
dc.contributor.author Haider, Umair
dc.contributor.author Yildiz, Beytullah
dc.contributor.other Software Engineering
dc.date.accessioned 2024-09-10T21:35:49Z
dc.date.available 2024-09-10T21:35:49Z
dc.date.issued 2023
dc.department Atılım University en_US
dc.department-temp [Haider, Umair; Yildiz, Beytullah] Atilim Univ, Dept Software Engn, Ankara, Turkiye en_US
dc.description YILDIZ, Beytullah/0000-0001-7664-5145 en_US
dc.description.abstract Efficiently predicting Click-through Rate (CTR) is crucial for the success of online advertising. Traditional methods often struggle to adapt to the dynamic nature of user preferences and the evolving relevance of advertisements. In this study, we propose a novel Reinforcement Learning (RL) approach for CTR prediction, leveraging OpenAI Gym and the Thompson Sampling algorithm. Our approach dynamically estimates CTR, cleverly adapting to the ever-changing landscape of user preferences and advertisement relevance. Results showcase the exceptional performance of Thompson Sampling in CTR prediction, sur-passing other RL methods with a remarkable 10% higher confidence level. This emphasizes the significant potential of our RL approach in optimizing the selection of online advertisements. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/CSCI62032.2023.00017
dc.identifier.endpage 70 en_US
dc.identifier.isbn 9798350361513
dc.identifier.isbn 9798350372304
dc.identifier.issn 2769-5670
dc.identifier.scopus 2-s2.0-85199984713
dc.identifier.startpage 64 en_US
dc.identifier.uri https://doi.org/10.1109/CSCI62032.2023.00017
dc.identifier.wos WOS:001283930300019
dc.institutionauthor Yıldız, Beytullah
dc.language.iso en en_US
dc.publisher Ieee Computer Soc en_US
dc.relation.ispartof International Conference on Computational Science and Computational Intelligence (CSCI) -- DEC 13-15, 2023 -- Las Vegas, NV en_US
dc.relation.ispartofseries International Conference on Computational Science and Computational Intelligence
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Reinforcement Learning en_US
dc.subject OpenAl Gym Environment en_US
dc.subject Thompson Sampling en_US
dc.subject Click-through rate en_US
dc.subject Online Advertising en_US
dc.title A Novel Use of Reinforcement Learning for Elevated Click-Through Rate in Online Advertising en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections