New computational methods for classification problems in the existence of outliers based on conic quadratic optimization

dc.authorscopusid36015912400
dc.authorscopusid23974021700
dc.contributor.authorYerlikaya-Ozkurt, Fatma
dc.contributor.authorTaylan, Pakize
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:40:14Z
dc.date.available2024-07-05T15:40:14Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, TR-06836 Ankara, Turkey; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkeyen_US
dc.description.abstractMost of the statistical research involves classification which is a procedure utilized to establish prediction models to set apart and classify new observations in the dataset from every fields of science, technology, and economics. However, these models may give misclassification results when dataset contains outliers (extreme data points). Therefore, we dealt with outliers in classification problem: firstly, by combining robustness of mean-shift outlier model and then stability of Tikhonov regularization based on continuous optimization method called Conic Quadratic Programming. These new methodologies are performed on classification dataset within the existence of outliers, and the results are compared with parametric model by using well-known performance measures.en_US
dc.identifier.citation8
dc.identifier.doi10.1080/03610918.2019.1661477
dc.identifier.endpage770en_US
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85073816123
dc.identifier.startpage753en_US
dc.identifier.urihttps://doi.org/10.1080/03610918.2019.1661477
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3318
dc.identifier.volume49en_US
dc.identifier.wosWOS:000486705000001
dc.identifier.wosqualityQ4
dc.institutionauthorYerlikaya Özkurt, Fatma
dc.language.isoenen_US
dc.publisherTaylor & Francis incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMean -shift Outlier Modelen_US
dc.subjectClassificationen_US
dc.subjectConvex programmingen_US
dc.subjectTikhonov regularizationen_US
dc.subjectRobust estimatoren_US
dc.titleNew computational methods for classification problems in the existence of outliers based on conic quadratic optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections