New Computational Methods for Classification Problems in the Existence of Outliers Based on Conic Quadratic Optimization

dc.authorscopusid 36015912400
dc.authorscopusid 23974021700
dc.contributor.author Yerlikaya-Ozkurt, Fatma
dc.contributor.author Taylan, Pakize
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:40:14Z
dc.date.available 2024-07-05T15:40:14Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, TR-06836 Ankara, Turkey; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkey en_US
dc.description.abstract Most of the statistical research involves classification which is a procedure utilized to establish prediction models to set apart and classify new observations in the dataset from every fields of science, technology, and economics. However, these models may give misclassification results when dataset contains outliers (extreme data points). Therefore, we dealt with outliers in classification problem: firstly, by combining robustness of mean-shift outlier model and then stability of Tikhonov regularization based on continuous optimization method called Conic Quadratic Programming. These new methodologies are performed on classification dataset within the existence of outliers, and the results are compared with parametric model by using well-known performance measures. en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.1080/03610918.2019.1661477
dc.identifier.endpage 770 en_US
dc.identifier.issn 0361-0918
dc.identifier.issn 1532-4141
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85073816123
dc.identifier.startpage 753 en_US
dc.identifier.uri https://doi.org/10.1080/03610918.2019.1661477
dc.identifier.uri https://hdl.handle.net/20.500.14411/3318
dc.identifier.volume 49 en_US
dc.identifier.wos WOS:000486705000001
dc.identifier.wosquality Q4
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 7
dc.subject Mean -shift Outlier Model en_US
dc.subject Classification en_US
dc.subject Convex programming en_US
dc.subject Tikhonov regularization en_US
dc.subject Robust estimator en_US
dc.title New Computational Methods for Classification Problems in the Existence of Outliers Based on Conic Quadratic Optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Collections