Sets of Random Variables With a Given Uncorrelation Structure

dc.contributor.author Ostrovska, S
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:08:56Z
dc.date.available 2024-07-05T15:08:56Z
dc.date.issued 2001
dc.description.abstract Let xi (1),...,xi (n) be random variables having finite expectations. Denote i(k) := # {(j(1),...,j(k)): 1 less than or equal to j(1) < ... < j(k) less than or equal to n and E (l=1)pi (k) xi (fi) = (l=1)pi (k) E xi (h)}, k = 2,...,n. The finite sequence (i(2),...,i(n)) is called the uncorrelation structure of xi (1),...,xi (n). It is proved that for any given sequence of nonnegative integers (i(2),...,i(n)) satisfying 0 less than or equal to i(k) less than or equal to ((n)(k))and any given nondegenerate probability distributions P-1,...,P-n there exist random variables eta (1),...,eta (n) with respective distributions P-1,...,P-n such that (i(2),...,i(n)) is their uncorrelation structure. (C) 2001 Elsevier Science B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/S0167-7152(01)00112-2
dc.identifier.issn 0167-7152
dc.identifier.scopus 2-s2.0-0042409639
dc.identifier.uri https://doi.org/10.1016/S0167-7152(01)00112-2
dc.identifier.uri https://hdl.handle.net/20.500.14411/1124
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof Statistics &amp; Probability Letters
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject independence en_US
dc.subject independence structure en_US
dc.subject uncorrelation structure en_US
dc.title Sets of Random Variables With a Given Uncorrelation Structure en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Fac Art & Sci, Dept Math, TR-06836 Ankara, Turkey; G Skovoroda State Univ, Kharkov, Ukraine en_US
gdc.description.endpage 366 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 359 en_US
gdc.description.volume 55 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W2077800692
gdc.identifier.wos WOS:000173013400004
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.726671E-9
gdc.oaire.isgreen false
gdc.oaire.keywords independence structure
gdc.oaire.keywords independence
gdc.oaire.keywords uncorrelation structure
gdc.oaire.keywords Probability distributions: general theory
gdc.oaire.popularity 2.739067E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.28
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections