Sets of Random Variables With a Given Uncorrelation Structure
| dc.contributor.author | Ostrovska, S | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:08:56Z | |
| dc.date.available | 2024-07-05T15:08:56Z | |
| dc.date.issued | 2001 | |
| dc.description.abstract | Let xi (1),...,xi (n) be random variables having finite expectations. Denote i(k) := # {(j(1),...,j(k)): 1 less than or equal to j(1) < ... < j(k) less than or equal to n and E (l=1)pi (k) xi (fi) = (l=1)pi (k) E xi (h)}, k = 2,...,n. The finite sequence (i(2),...,i(n)) is called the uncorrelation structure of xi (1),...,xi (n). It is proved that for any given sequence of nonnegative integers (i(2),...,i(n)) satisfying 0 less than or equal to i(k) less than or equal to ((n)(k))and any given nondegenerate probability distributions P-1,...,P-n there exist random variables eta (1),...,eta (n) with respective distributions P-1,...,P-n such that (i(2),...,i(n)) is their uncorrelation structure. (C) 2001 Elsevier Science B.V. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/S0167-7152(01)00112-2 | |
| dc.identifier.issn | 0167-7152 | |
| dc.identifier.scopus | 2-s2.0-0042409639 | |
| dc.identifier.uri | https://doi.org/10.1016/S0167-7152(01)00112-2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1124 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Bv | en_US |
| dc.relation.ispartof | Statistics & Probability Letters | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | independence | en_US |
| dc.subject | independence structure | en_US |
| dc.subject | uncorrelation structure | en_US |
| dc.title | Sets of Random Variables With a Given Uncorrelation Structure | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Fac Art & Sci, Dept Math, TR-06836 Ankara, Turkey; G Skovoroda State Univ, Kharkov, Ukraine | en_US |
| gdc.description.endpage | 366 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 359 | en_US |
| gdc.description.volume | 55 | en_US |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W2077800692 | |
| gdc.identifier.wos | WOS:000173013400004 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.726671E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | independence structure | |
| gdc.oaire.keywords | independence | |
| gdc.oaire.keywords | uncorrelation structure | |
| gdc.oaire.keywords | Probability distributions: general theory | |
| gdc.oaire.popularity | 2.739067E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.28 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |