Text Messaging-Based Medical Diagnosis Using Natural Language Processing and Fuzzy Logic

dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid Damaševičius, Robertas/0000-0001-9990-1084
dc.authorscopusid 56155748000
dc.authorscopusid 57223024920
dc.authorscopusid 56962766700
dc.authorscopusid 56811478400
dc.authorscopusid 6603451290
dc.authorwosid Abayomi-Alli, Olusola Oluwakemi/ABC-2838-2021
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid Damaševičius, Robertas/E-1387-2017
dc.contributor.author Omoregbe, Nicholas A. I.
dc.contributor.author Ndaman, Israel O.
dc.contributor.author Misra, Sanjay
dc.contributor.author Abayomi-Alli, Olusola O.
dc.contributor.author Damasevicius, Robertas
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:39:55Z
dc.date.available 2024-07-05T15:39:55Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Omoregbe, Nicholas A. I.; Ndaman, Israel O.; Misra, Sanjay; Abayomi-Alli, Olusola O.] Covenant Univ, Ctr ICT ICE Res, CUCRID Bldg, Ota, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Damasevicius, Robertas] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Gliwice, Poland en_US
dc.description Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084 en_US
dc.description.abstract The use of natural language processing (NLP) methods and their application to developing conversational systems for health diagnosis increases patients' access to medical knowledge. In this study, a chatbot service was developed for the Covenant University Doctor (CUDoctor) telehealth system based on fuzzy logic rules and fuzzy inference. The service focuses on assessing the symptoms of tropical diseases in Nigeria. Telegram Bot Application Programming Interface (API) was used to create the interconnection between the chatbot and the system, while Twilio API was used for interconnectivity between the system and a short messaging service (SMS) subscriber. The service uses the knowledge base consisting of known facts on diseases and symptoms acquired from medical ontologies. A fuzzy support vector machine (SVM) is used to effectively predict the disease based on the symptoms inputted. The inputs of the users are recognized by NLP and are forwarded to the CUDoctor for decision support. Finally, a notification message displaying the end of the diagnosis process is sent to the user. The result is a medical diagnosis system which provides a personalized diagnosis utilizing self-input from users to effectively diagnose diseases. The usability of the developed system was evaluated using the system usability scale (SUS), yielding a mean SUS score of 80.4, which indicates the overall positive evaluation. en_US
dc.description.sponsorship Covenant University through the Centre for Research, Innovation, and Discovery (CUCRID) en_US
dc.description.sponsorship The authors gratefully acknowledge the support and sponsorship of Covenant University through the Centre for Research, Innovation, and Discovery (CUCRID). en_US
dc.identifier.citationcount 26
dc.identifier.doi 10.1155/2020/8839524
dc.identifier.issn 2040-2295
dc.identifier.issn 2040-2309
dc.identifier.scopus 2-s2.0-85104532134
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1155/2020/8839524
dc.identifier.uri https://hdl.handle.net/20.500.14411/3254
dc.identifier.volume 2020 en_US
dc.identifier.wos WOS:000587792500001
dc.institutionauthor Mısra, Sanjay
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 75
dc.subject [No Keyword Available] en_US
dc.title Text Messaging-Based Medical Diagnosis Using Natural Language Processing and Fuzzy Logic en_US
dc.type Article en_US
dc.wos.citedbyCount 38
dspace.entity.type Publication
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections