A Decomposition of the Limit Q-Bernstein Type Operators Via a Universal Factor

dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Pirimoglu, Lutfi Atahan
dc.contributor.author Turan, Mehmet
dc.date.accessioned 2026-02-05T19:58:23Z
dc.date.available 2026-02-05T19:58:23Z
dc.date.issued 2026
dc.description Pirimoğlu, Lütfi Atahan/0009-0002-8625-2083 en_US
dc.description.abstract The focus of this work is on the properties of the unifying operator Uq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_q$$\end{document} on C[0, 1], which serves as a universal left factor in a decomposition of the limit q-Bernstein type operators, L infinity,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty ,q}$$\end{document}. More precisely, the factorization L infinity,q=Uq degrees TL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty ,q}= U_q\circ T_L$$\end{document}, where TL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_L$$\end{document} is a linear operator on C[0, 1] depending on L, holds. It is shown that this factorization facilitates the derivation of new results and/or the simplification of proofs for the known ones. en_US
dc.description.sponsorship Atilim University en_US
dc.description.sponsorship Open access funding provided by the Scientific and Technological Research Council of Turkiye (TUBITAK). en_US
dc.identifier.doi 10.1007/s00025-025-02593-1
dc.identifier.issn 1422-6383
dc.identifier.issn 1420-9012
dc.identifier.scopus 2-s2.0-105027408187
dc.identifier.uri https://doi.org/10.1007/s00025-025-02593-1
dc.identifier.uri https://hdl.handle.net/20.500.14411/11119
dc.language.iso en en_US
dc.publisher Springer Basel AG en_US
dc.relation.ispartof Results in Mathematics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Limit q-Bernstein Type Operators en_US
dc.subject Positive Linear Operators en_US
dc.subject Analytic Continuation en_US
dc.subject Entire Function en_US
dc.subject q-Calculus en_US
dc.title A Decomposition of the Limit Q-Bernstein Type Operators Via a Universal Factor en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Pirimoğlu, Lütfi Atahan/0009-0002-8625-2083
gdc.author.scopusid 35610828900
gdc.author.scopusid 60332350500
gdc.author.scopusid 35782583700
gdc.author.wosid Turan, Mehmet/Jyq-4459-2024
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya; Pirimoglu, Lutfi Atahan; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Incek, Ankara, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.volume 81 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W7123631135
gdc.identifier.wos WOS:001660624900002
gdc.index.type WoS
gdc.index.type Scopus
gdc.openalex.collaboration National
gdc.openalex.normalizedpercentile 0.34
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Ostrovska, Sofiya
gdc.virtual.author Turan, Mehmet
gdc.wos.citedcount 0
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 50be38c5-40c4-4d5f-b8e6-463e9514c6dd

Files

Collections