On the eigenfunctions of the <i>q</i>-Bernstein operators

dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Turan, Mehmet
dc.date.accessioned 2024-07-05T15:24:07Z
dc.date.available 2024-07-05T15:24:07Z
dc.date.issued 2023
dc.description Ostrovska, Sofiya/0000-0003-1842-7953 en_US
dc.description.abstract The eigenvalue problems for linear operators emerge in various practical applications in physics and engineering. This paper deals with the eigenvalue problems for the q-Bernstein operators, which play an important role in the q-boson theory of modern theoretical physics. The eigenstructure of the classical Bernstein operators was investigated in detail by S. Cooper and S. Waldron back in 2000. Some of their results were extended for other Bernstein-type operators, including the q-Bernstein and the limit q-Bernstein operators. The current study is a pursuit of this research. The aim of the present work is twofold. First, to derive for the q-Bernstein polynomials analogues of the Cooper-Waldron results on zeroes of the eigenfunctions. Next, to present in detail the proof concerning the existence of non-polynomial eigenfunctions for the limit q-Bernstein operator. en_US
dc.identifier.doi 10.1007/s43034-022-00235-z
dc.identifier.issn 2639-7390
dc.identifier.issn 2008-8752
dc.identifier.scopus 2-s2.0-85142281774
dc.identifier.uri https://doi.org/10.1007/s43034-022-00235-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/2394
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.ispartof Annals of Functional Analysis
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Eigenvalue en_US
dc.subject Eigenfunction en_US
dc.subject Infinite linear system en_US
dc.subject q-Bernstein operator en_US
dc.title On the eigenfunctions of the <i>q</i>-Bernstein operators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ostrovska, Sofiya/0000-0003-1842-7953
gdc.author.scopusid 35610828900
gdc.author.scopusid 35782583700
gdc.author.wosid Turan, Mehmet/JYQ-4459-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, TR-06830 Ankara, Turkiye en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 14 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4309580837
gdc.identifier.wos WOS:000886130800001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.6451947E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Eigenvalue problems for linear operators
gdc.oaire.keywords Approximation by positive operators
gdc.oaire.keywords \(q\)-Bernstein operator
gdc.oaire.keywords eigenvalue
gdc.oaire.keywords infinite linear system
gdc.oaire.keywords eigenfunction
gdc.oaire.popularity 1.7860751E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.41744083
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 0
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Turan, Mehmet
gdc.virtual.author Ostrovska, Sofiya
gdc.wos.citedcount 2
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On the eigenfunctions of the AnnalFuncAnal_2023_SO_MehmetTuran.pdf
Size:
293 KB
Format:
Adobe Portable Document Format

Collections