Text Classification Using Word Embedding in Rule-Based Methodologies: A Systematic Mapping

dc.contributor.author Aubaid, Asmaa M.
dc.contributor.author Mishra, Alok
dc.date.accessioned 2024-07-05T15:27:08Z
dc.date.available 2024-07-05T15:27:08Z
dc.date.issued 2018
dc.description Mishra, Alok/0000-0003-1275-2050; en_US
dc.description.abstract With the advancing growth of the World Wide Web (WWW) and the expanding availability of electronic text documents, the automatic assignment of text classification (ATC) has become more important in sorting out information and knowledge. One of the most crucial tasks that should be carried out is document representation using word embedding and Rule-Based methodologies. As a result, this, along with their modeling methods, has become an essential step to improve neural language processing for text classification. In this paper, a systematic mapping study is a way to survey all the primary studies on word embedding to rule-based and machine learning of automatic text classification. The search procedure identifies 20 articles as relevant to answer our research questions. This study maps what is currently known about word embedding in rule-based text classification (TC). The result shows that the research is concentrated on some main areas, mainly in social sciences, shopping products classification, digital libraries, and spam filtering. The present paper contributes to the available literature by summarizing all research in the field of TC and it can be beneficial to other researchers and specialists in order to sort information. en_US
dc.identifier.doi 10.18421/TEM74-31
dc.identifier.issn 2217-8309
dc.identifier.issn 2217-8333
dc.identifier.scopus 2-s2.0-85058117217
dc.identifier.uri https://doi.org/10.18421/TEM74-31
dc.identifier.uri https://hdl.handle.net/20.500.14411/2643
dc.language.iso en en_US
dc.publisher Uikten - Assoc information Communication Technology Education & Science en_US
dc.relation.ispartof TEM Journal
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Systematic Mapping en_US
dc.subject Word Embedding en_US
dc.subject Rule-Based en_US
dc.subject Text Classification en_US
dc.title Text Classification Using Word Embedding in Rule-Based Methodologies: A Systematic Mapping en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.scopusid 57204948522
gdc.author.scopusid 7201441575
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.author.wosid aubaid, asmaa/AAY-4014-2021
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Aubaid, Asmaa M.] Atilim Univ, Dept Modeling & Design Engn Syst, Ankara, Turkey; [Mishra, Alok] Atilim Univ, Dept Software Engn, Ankara, Turkey en_US
gdc.description.endpage 914 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 902 en_US
gdc.description.volume 7 en_US
gdc.description.wosquality Q4
gdc.identifier.openalex W4289329149
gdc.identifier.wos WOS:000452915000031
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6729523E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7188318E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.39712492
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 3
gdc.plumx.mendeley 34
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.virtual.author Mıshra, Alok
gdc.wos.citedcount 3
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections