An intelligent process planning system for prismatic parts using STEP features
dc.authorid | Amaitik, Saleh/0000-0001-7055-4461 | |
dc.authorscopusid | 15727201300 | |
dc.authorscopusid | 7006243664 | |
dc.authorwosid | Amaitik, Saleh/D-9824-2018 | |
dc.contributor.author | Amaitik, Saleh M. | |
dc.contributor.author | Kilic, S. Engin | |
dc.contributor.other | Manufacturing Engineering | |
dc.date.accessioned | 2024-07-05T14:33:27Z | |
dc.date.available | 2024-07-05T14:33:27Z | |
dc.date.issued | 2007 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Mfg Engn, TR-06836 Ankara, Turkey; Middle E Tech Univ, Dept Mech Engn, TR-06531 Ankara, Turkey | en_US |
dc.description | Amaitik, Saleh/0000-0001-7055-4461 | en_US |
dc.description.abstract | This paper presents an intelligent process planning system using STEP features (ST-FeatCAPP) for prismatic parts. The system maps a STEP AP224 XML data file, without using a complex feature recognition process, and produces the corresponding machining operations to generate the process plan and corresponding STEP-NC in XML format. It carries out several stages of process planning such as operations selection, tool selection, machining parameters determination, machine tools selection and setup planning. A hybrid approach of most recent techniques ( neural networks, fuzzy logic and rule-based) of artificial intelligence is used as the inference engine of the developed system. An object-oriented approach is used in the definition and implementation of the system. An example part is tested and the corresponding process plan is presented to demonstrate and verify the proposed CAPP system. The paper thus suggests a new feature-based intelligent CAPP system for avoiding complex feature recognition and knowledge acquisition problems. | en_US |
dc.identifier.citation | 76 | |
dc.identifier.doi | 10.1007/s00170-005-0269-5 | |
dc.identifier.endpage | 993 | en_US |
dc.identifier.issn | 0268-3768 | |
dc.identifier.issn | 1433-3015 | |
dc.identifier.issue | 9-10 | en_US |
dc.identifier.scopus | 2-s2.0-33846194282 | |
dc.identifier.startpage | 978 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00170-005-0269-5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/934 | |
dc.identifier.volume | 31 | en_US |
dc.identifier.wos | WOS:000244335300016 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Kılıç, Sadık Engin | |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | process planning | en_US |
dc.subject | CAPP | en_US |
dc.subject | STEP | en_US |
dc.subject | neural networks | en_US |
dc.subject | fuzzy logic | en_US |
dc.title | An intelligent process planning system for prismatic parts using STEP features | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d70c9839-4358-47dd-834e-fc115cb0fca3 | |
relation.isAuthorOfPublication.latestForDiscovery | d70c9839-4358-47dd-834e-fc115cb0fca3 | |
relation.isOrgUnitOfPublication | 9804a563-7f37-4a61-92b1-e24b3f0d8418 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 9804a563-7f37-4a61-92b1-e24b3f0d8418 |