Physics-Informed Neural Network for Nonlinear Bending Analysis of Nano-Beams: A Systematic Hyperparameter Optimization

dc.contributor.author Esfahani, Saba Sadat Mirsadeghi
dc.contributor.author Fallah, Ali
dc.contributor.author Aghdam, Mohammad Mohammadi
dc.date.accessioned 2025-10-06T17:48:32Z
dc.date.available 2025-10-06T17:48:32Z
dc.date.issued 2025
dc.description Fallah, Ali/0000-0002-7744-4246; en_US
dc.description.abstract This paper investigates the nonlinear bending analysis of nano-beams using the physics-informed neural network (PINN) method. The nonlinear governing equations for the bending of size-dependent nano-beams are derived from Hamilton's principle, incorporating nonlocal strain gradient theory, and based on Euler-Bernoulli beam theory. In the PINN method, the solution is approximated by a deep neural network, with network parameters determined by minimizing a loss function that consists of the governing equation and boundary conditions. Despite numerous reports demonstrating the applicability of the PINN method for solving various engineering problems, tuning the network hyperparameters remains challenging. In this study, a systematic approach is employed to fine-tune the hyperparameters using hyperparameter optimization (HPO) via Gaussian process-based Bayesian optimization. Comparison of the PINN results with available reference solutions shows that the PINN, with the optimized parameters, produces results with high accuracy. Finally, the impacts of boundary conditions, different loads, and the influence of nonlocal strain gradient parameters on the bending behavior of nano-beams are investigated. en_US
dc.identifier.doi 10.3390/mca30040072
dc.identifier.issn 1300-686X
dc.identifier.issn 2297-8747
dc.identifier.scopus 2-s2.0-105014515561
dc.identifier.uri https://doi.org/10.3390/mca30040072
dc.identifier.uri https://hdl.handle.net/20.500.14411/10841
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof Mathematical and Computational Applications en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Physics-Informed Neural Networks en_US
dc.subject Hyperparameter Optimization en_US
dc.subject Nano-Beams en_US
dc.subject Nonlinear Bending Analysis en_US
dc.subject Nonlocal Strain Gradient Theory en_US
dc.title Physics-Informed Neural Network for Nonlinear Bending Analysis of Nano-Beams: A Systematic Hyperparameter Optimization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Fallah, Ali/0000-0002-7744-4246
gdc.author.scopusid 60077131000
gdc.author.scopusid 55196291500
gdc.author.scopusid 60077394900
gdc.author.wosid Aghdam, M./R-8392-2019
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Esfahani, Saba Sadat Mirsadeghi; Aghdam, Mohammad Mohammadi] Amirkabir Univ Technol, Mech Engn Dept, Tehran, Iran; [Fallah, Ali] Atilim Univ, Dept Automot Engn, TR-06830 Ankara, Turkiye en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 72
gdc.description.volume 30 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4412454312
gdc.identifier.wos WOS:001557981600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.25
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 2
gdc.virtual.author Fallah, Ali
gdc.wos.citedcount 2
relation.isAuthorOfPublication 92163e16-11d7-4e19-8ec0-ba1a59c34089
relation.isAuthorOfPublication.latestForDiscovery 92163e16-11d7-4e19-8ec0-ba1a59c34089
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication.latestForDiscovery 50be38c5-40c4-4d5f-b8e6-463e9514c6dd

Files

Collections