Enhancing Urban Sustainability With Novel Vertical-Axis Wind Turbines: a Study on Residential Buildings in Çeşme

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

This study investigates the integration of three types of vertical-axis wind turbines (VAWTs)-helical, IceWind, and a combined design-on residential buildings in & Ccedil;e & scedil;me, T & uuml;rkiye, a region with an average wind speed of 7 m/s. The research explores the potential of small-scale wind turbines in urban areas, providing sustainable solutions for renewable energy generation and reducing reliance on conventional energy sources. The turbines were designed and analyzed using SolidWorks and ANSYS Fluent, achieving power outputs of 350 W for the helical turbine, 430 W for the IceWind turbine, and 590 W for the combined turbine. A total of 42 turbines were mounted on a five-storey residential building model, and DesignBuilder software was utilized to simulate and evaluate the energy consumption. The baseline energy consumption of 172 kWh/m2 annually was reduced by 18.45%, 22.93%, and 30.88% for the helical, IceWind, and combined turbines, respectively. Furthermore, the economic analysis showed payback periods of 12.89 years for the helical turbine, 10.60 years for the IceWind turbine, and 10.49 years for the combined turbine. These findings emphasize the viability of integrating VAWTs into urban buildings as an effective strategy for reducing energy consumption, lowering costs, and enhancing energy efficiency.

Description

Keywords

Energy Consumption, Residential Buildings, Payback Period, Helical Wind Turbine, Icewind Turbine, Combined Vawt

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Sustainability

Volume

17

Issue

9

Start Page

3859

End Page

Collections

PlumX Metrics
Citations

Scopus : 5

Captures

Mendeley Readers : 30

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
27.71485927

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo