Enhancing Urban Sustainability With Novel Vertical-Axis Wind Turbines: a Study on Residential Buildings in Çeşme

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

This study investigates the integration of three types of vertical-axis wind turbines (VAWTs)-helical, IceWind, and a combined design-on residential buildings in & Ccedil;e & scedil;me, T & uuml;rkiye, a region with an average wind speed of 7 m/s. The research explores the potential of small-scale wind turbines in urban areas, providing sustainable solutions for renewable energy generation and reducing reliance on conventional energy sources. The turbines were designed and analyzed using SolidWorks and ANSYS Fluent, achieving power outputs of 350 W for the helical turbine, 430 W for the IceWind turbine, and 590 W for the combined turbine. A total of 42 turbines were mounted on a five-storey residential building model, and DesignBuilder software was utilized to simulate and evaluate the energy consumption. The baseline energy consumption of 172 kWh/m2 annually was reduced by 18.45%, 22.93%, and 30.88% for the helical, IceWind, and combined turbines, respectively. Furthermore, the economic analysis showed payback periods of 12.89 years for the helical turbine, 10.60 years for the IceWind turbine, and 10.49 years for the combined turbine. These findings emphasize the viability of integrating VAWTs into urban buildings as an effective strategy for reducing energy consumption, lowering costs, and enhancing energy efficiency.

Description

Keywords

Energy Consumption, Residential Buildings, Payback Period, Helical Wind Turbine, Icewind Turbine, Combined Vawt

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2

Source

Volume

17

Issue

9

Start Page

End Page

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo