Comparison of the Performance of Structural Break Tests in Stationary and Nonstationary Series: a New Bootstrap Algorithm

dc.contributor.author Camalan, Ozge
dc.contributor.author Hasdemir, Esra
dc.contributor.author Omay, Tolga
dc.contributor.author Kucuker, Mustafa Can
dc.date.accessioned 2024-09-10T21:33:35Z
dc.date.available 2024-09-10T21:33:35Z
dc.date.issued 2024
dc.description.abstract Structural breaks are considered as permanent changes in the series mainly because of shocks, policy changes, and global crises. Hence, making estimations by ignoring the presence of structural breaks may cause the biased parameter value. In this context, it is vital to identify the presence of the structural breaks and the break dates in the series to prevent misleading results. Accordingly, the first aim of this study is to compare the performance of unit root with structural break tests allowing a single break and multiple structural breaks. For this purpose, firstly, a Monte Carlo simulation study has been conducted through using a generated homoscedastic and stationary series in different sample sizes to evaluate the performances of these tests. As a result of the simulation study, Zivot and Andrews (J Bus Econ Stat 20(1):25-44, 1992) are the best-performing tests in capturing a single break. The most powerful tests for the multiple break setting are those developed by Kapetanios (J Time Ser Anal 26(1):123-133, 2005) and Perron (Palgrave Handb Econom 1:278-352, 2006). A new Bootstrap algorithm has been proposed along with the study's primary aim. This newly proposed Bootstrap algorithm calculates the optimal number of statistically significant structural breaks under more general assumptions. Therefore, it guarantees finding an accurate number of optimal breaks in real-world data. In the empirical part, structural breaks in the real interest rate data of the US and Australia resulting from policy changes have been examined. The results concluded that the bootstrap sequential break test is the best-performing approach due to the general assumption made to cover real-world data. en_US
dc.description.sponsorship Atilim University en_US
dc.description.sponsorship No Statement AvailableDAS:The 90-day bank accepted bill rate of Australia can be gathered from https://www.oecd.org/sdd/oecdmaineconomicindicatorsmei.htm, accessed on 3 February 2024. The 3-month treasury bill rate of the US and inflation rate of the US and Australia data can be obtained from https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b, accessed on 4 February 2024. en_US
dc.identifier.doi 10.1007/s10614-024-10651-z
dc.identifier.issn 0927-7099
dc.identifier.issn 1572-9974
dc.identifier.scopus 2-s2.0-85197685695
dc.identifier.uri https://doi.org/10.1007/s10614-024-10651-z
dc.identifier.uri https://hdl.handle.net/20.500.14411/7295
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Computational Economics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Unit root with structural breaks en_US
dc.subject Monte Carlo simulation en_US
dc.subject Real interest rate en_US
dc.subject Bootstrap algorithm en_US
dc.subject C40 en_US
dc.subject C53 en_US
dc.subject C22 en_US
dc.title Comparison of the Performance of Structural Break Tests in Stationary and Nonstationary Series: a New Bootstrap Algorithm en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59206741200
gdc.author.scopusid 57300824900
gdc.author.scopusid 23978235900
gdc.author.scopusid 57826502400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Camalan, Ozge; Omay, Tolga; Kucuker, Mustafa Can] Atilim Univ, Dept Econ, Ankara, Turkiye; [Hasdemir, Esra] Atilim Univ, Dept Int Trade & Logist, Ankara, Turkiye en_US
gdc.description.endpage 3159
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3111
gdc.description.volume 65
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W4400428090
gdc.identifier.wos WOS:001264643700001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.512647E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 3.1167384E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 2.74633333
gdc.openalex.normalizedpercentile 0.87
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Omay, Tolga
gdc.virtual.author Çamalan, Özge
gdc.virtual.author Hasdemir, Esra
gdc.virtual.author Küçüker, Mustafa Can
gdc.wos.citedcount 2
relation.isAuthorOfPublication c49f4d4e-0fdb-400e-ba3c-62ec300b5c96
relation.isAuthorOfPublication 6da28024-36a7-40cb-9529-5449feccf522
relation.isAuthorOfPublication 3d84c3c6-38af-41d3-a771-1bea6b914779
relation.isAuthorOfPublication eebcfeb2-a841-4316-9e8c-9d7708c92239
relation.isAuthorOfPublication.latestForDiscovery c49f4d4e-0fdb-400e-ba3c-62ec300b5c96
relation.isOrgUnitOfPublication f17c3770-9c6e-4de2-90e7-73c30275c2f9
relation.isOrgUnitOfPublication 91df35e9-cb7b-4457-9edb-26bfbb5d8207
relation.isOrgUnitOfPublication 5232d05c-a649-4c17-8445-8ef86e80a51c
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery f17c3770-9c6e-4de2-90e7-73c30275c2f9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Comparison of the Performance of Structural Break Tests in Stationary and Nonstationary Series.pdf
Size:
2.28 MB
Format:
Adobe Portable Document Format

Collections